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Abstract

Continual test-time domain adaptation (CTTA) aims to
adapt the source pre-trained model to a continually chang-
ing target domain without additional data acquisition or
labeling costs. This issue necessitates an initial perfor-
mance enhancement within the present domain without la-
bels while concurrently averting an excessive bias toward
the current domain. Such bias exacerbates catastrophic
forgetting and diminishes the generalization ability to fu-
ture domains. To tackle the problem, this paper designs
a versatile framework to capture high-quality supervision
signals from three aspects: 1) The adaptive thresholds are
employed to determine the reliability of pseudo-labels; 2)
The knowledge from the source pre-trained model is utilized
to adjust the unreliable one, and 3) By evaluating past su-
pervision signals, we calculate a diversity score to ensure
subsequent generalization. In this way, we form a complete
supervisory signal generation framework, which can cap-
ture the current domain discriminative and reserve gener-
alization in future domains. Finally, to avoid catastrophic
forgetting, we design a weighted soft parameter alignment
method to explore the knowledge from the source model.
Extensive experimental results demonstrate that our method
performs well on several benchmark datasets.

1. Introduction
Deep neural networks have achieved remarkable success in
visual tasks when training and testing data obey the same
distribution. Such networks, however, suffer from the gen-
eralization problem due to the ubiquitous domain shift [30].
For example, a classification network pre-trained in the
normal, natural images may not recognize the corrupted
images. Thus, domain adaptation is essential to transfer
knowledge from the source domain to the target one by re-
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ducing the shift. However, the target domain labels are usu-
ally unavailable, and the problem is primarily explored at
Unsupervised Domain Adaptation (UDA) [15, 31]. More
realistically, the source data is often inaccessible during test
time due to privacy or business problems, making the adap-
tation problem more challenging. Initial approaches attempt
to employ the source model, and unlabeled target data for
testing, called Source-free / Test-Time domain Adaptation
(TTA) [3, 19, 33].

Existing TTA methods usually solve the domain shift
problem by updating the adapted model parameters us-
ing the generated pseudo-labels or entropy regularization,
which are effective when the target distribution is fixed but
perform unstably when the distribution of the target do-
main is continually changing [22, 29, 36]. Such a problem
has brought a novel and fully underexplored area, called
Continual Test-Time Domain Adaptation (CTTA), where a
source pre-trained model must adapt to a stream of contin-
ually changing target domains without using source data.
Research has demonstrated that CTTA mainly faces the fol-
lowing problems. First, we should explore supervisory sig-
nals without labels to improve performance in the current
target domain, where widespread noisy pseudo labels are a
crucial factor affecting performance. Then, the adaptation
process means moving the initial source parameterization
to a parameterization that better models the current target
distribution, which carries the risk that predictions on the
source distribution become inaccurate, causing catastrophic
forgetting. Finally, an excessive affinity for the existing do-
main will cause generalization to be lost for future domains
when the current target distribution is narrow, especially un-
der noisy pseudo labels.

Recently, some methods have been proposed to tackle
such an intractable problem. CoTTA [29] adopts a weight-
average teacher network to improve the quality of gener-
ated pseudo-labels and employs some source model pa-
rameters to cover the adapted model for alleviating catas-
trophic forgetting. Robust Mean Teacher [6] employs a
multi-viewed contrastive loss to pull test features towards
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the initial source space and learn invariances concerning the
input space. However, research [20] has shown that net-
work parameters tuned with the current domain may cause
the loss of generalization and impair the performance of
further domains. To this end, Gan [7] adopts the visual
domain prompts to dynamically update a small portion of
the input image pixels and mitigate the error accumulation
problem. ViDA [18] injects visual domain adapters into the
pre-trained model, which leverages high-rank and low-rank
features to adapt the current domain distribution and main-
tain the continual domain-shared knowledge. As a simpler
strategy, some methods [10, 20] only update the network’s
normalization parameters and freeze all others, which can
retain a large amount of source pre-trained model knowl-
edge. However, few works can fully enhance the perfor-
mance of the current domain while ensuring the general-
ization of future domains, which requires exploring a more
versatile optimization strategy.

The methods mentioned above lead to our research goal,
improving the network discrimination in the current domain
while ensuring the generalization of future domains. We
build a versatile framework that generates high-quality su-
pervision signals from two levels: reliability and diversity.
Specifically, we calculate an independent threshold for each
class through global and local strategies to divide pseudo-
labels into reliable and unreliable parts. Then, we adopt the
source predictions for the unreliable pseudo-labels to select
potentially similar samples and calibrate the pseudo-labels
for capturing diverse supervision signals. Based on the cal-
ibrated pseudo-labels, we begin by tracking the recent ten-
dency of a model’s prediction with an exponential moving
average. Finally, we calculate a diversity score to ensure
the generalization for future domains. In this way, we form
a complete supervisory signal generation framework, which
can optimize the current domain efficiently and reserve gen-
eralization in future domains.

Except for the supervising signal generation, we pro-
pose continually capturing source knowledge and calibrat-
ing the adapted model to maintain generalization and pre-
vent catastrophic forgetting. Unlike CoTTA [29] randomly
using some source model parameters to cover the adapted
model, we hope that the objective function can be employed
to guide the parameter transfer of the source pre-trained
model and the adapted one. To this end, we introduce a
soft-weighted parameter alignment that forces the adapted
network to be similar to the source one. More importantly,
noise signals inevitably appear in the generated pseudo-
labels due to the absence of supervisory signals. The ob-
servation that the latter layers in a network are much more
sensitive to label noise, while their former counterparts are
quite robust [1, 35], inspires novel weighted guidance. The
weights control the similarity of the adapted model to the
source one with the depth of layers, allowing noise-robust

former layers to be adjusted more and noise-sensitive latter
ones to be adjusted less.

Research Question. Existing continual test-time adap-
tation implementations may face a game between discrim-
ination in the current domain and generalization in future
domains. Meanwhile, the absence of label signals makes
the model performance worse when facing domain shifts.
Thus, one research question is how to construct a novel
pipeline that ensures generalization and improves discrimi-
nation, and the other is how to capture knowledge from the
source pre-trained model.

Contributions. The highlights of the paper are three-
fold: 1) By the analysis and summary of the previous work,
we design a versatile framework that generates high-quality
supervision signals from two levels: Reliability and Diver-
sity. The adaptive thresholds are employed to determine the
reliability of pseudo labels, and the diversity score is em-
ployed to ensure the generalization for future domains. 2)
We explore reliable supervision signals with a source pre-
trained model to guide the test time tuning. The prior dis-
tribution for the source model is utilized to calibrate unreli-
able pseudo-labels, and the learnable parameters are aligned
with the source parameters in a soft-weighted manner to
alleviate catastrophic forgetting; 3) Extensive experimen-
tal results demonstrate that our method achieves state-of-
the-art performance on several datasets. The ablation ex-
periments are conducted to verify the effectiveness of each
module.

2. Related Work
2.1. Domain Adaptation

Domain adaptation [2, 13, 34] refers to the goal of learn-
ing a concept from labeled data in the source domain that
performs well on different but related target domains. The
critical domain adaptation problem lies in the misalignment
between the feature and label spaces of the source and target
domains [5, 28, 32]. To solve this problem, some domain
adaptation methods guide the deep model to learn domain
invariant representations [25] and classifiers [31]. Specifi-
cally, some works [8, 9, 26] utilize adversarial training to
align feature distribution with a domain discriminator, and
some works constrain the cross-domain feature space by en-
tropy constraint [11, 23], or maximum prediction rank [4].
All the above methods need to access source and target data
during the adaptation process, making learning transduc-
tive.

2.2. Test-Time Domain Adaptation

Recently, some works on test-time domain adaptation focus
on a more challenging setting where only the source model
and unlabeled target samples are available. Some test-time
domain adaptation methods [15] utilize generative models
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Figure 1. This is the flow of our method. We propose a novel pipeline to optimize the network’s normalization parameters to ensure
long-term generalization and improve instantaneous discrimination, and confidence thresholds are utilized in a self-adaptive manner to
select reliable labels. Then, we explore various prior knowledge from the source pre-trained model to calibrate and enrich supervision
signals. Moreover, we track the recent tendency of a model’s prediction with an exponential moving average for a diversity score to ensure
subsequent generalization. Finally, the learnable parameters are aligned with the source parameters in a soft-weighted manner to alleviate
catastrophic forgetting.

to achieve the feature alignment between the source and
target domain without additional source data. In addition,
some methods achieve test-time domain adaptation by fine-
tuning the source model with the help of target data and do
not require explicit domain alignment. Test entropy mini-
mization (TENT) [27] introduces entropy minimization as
a test-time optimization objective, which estimates normal-
ization statistics and optimizes channel-wise affine transfor-
mations to update online on each batch. Source HypOthe-
sis Transfer (SHOT) [17] aims to learn the optimal target-
specific feature learning module to fit the source hypothe-
sis. EATA [21] utilizes certainty and diversity weighting for
test-time adaptation and achieves competitive performance.
However, the weighting scheme needs to be manually spec-
ified for each dataset.

Most test-time adaptation methods only consider the of-
fline scenario, where the full set of test data is provided
during the training process. Further, CoTTA [29] extends
test-time adaptation from offline scenario to online contin-
ual scenario. It considers a more challenging but more real-
istic problem named Continual Test-Time Domain Adapta-
tion, where a source pre-trained model needs to adapt to a
stream of continually changing target test data without us-
ing any source data. RMT [6] uses symmetric cross-entropy
and contrastive learning to pull the test feature space closer
to the source domain. To prevent the loss of generaliza-
tion and impair the performance of future domains, Gan
[7] adopts the visual domain prompts to dynamically up-
date a small portion of the input image pixels and miti-

gate the error accumulation problem, and ViDA [18] in-
jects visual domain adapters into the pre-trained model to
adapt the current domain distribution and maintain the con-
tinual domain-shared knowledge. In a simpler manner,
NOTE [10] proposes an instance-aware batch normaliza-
tion to correct normalization for out-of-distribution sam-
ples, and RoTTA [37] presents a robust batch normaliza-
tion scheme to estimate the normalization statistics. Re-
cently, ROID [20] proposes to continually weight-average
the source and adapted model, and an adaptive additive
prior correction scheme for diversity.

Our Study. Existing methods lack the integration of
reliability optimization and diversity generalization within
a unified framework, leading to performance deficiencies.
Our approach initially assesses the reliability of the super-
visory signals, and subsequently enhances the unreliable
ones with a source pre-trained model. We assign diverse
weights to different signals, ensuring comprehensive learn-
ing in the current domain while efficiently generalizing fu-
ture domains.

3. Proposed Method
Following [29], we consider a continual test-time domain
adaptation setting, where a pre-trained model needs to adapt
to a continually changing target domain online without
source data. Consider a pre-trained model Fθ(x) with pa-
rameter θ trained on the source data. Unlabeled target do-
main data Xt is provided sequentially, and the data distri-
bution continually changes. At testing stage t, when the
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unlabeled target data Xt = [x1t , ..., x
B
t ] is sent to the model

Fθt , where B is the number of samples. The model Fθt
needs to make the prediction Pt = [p1t , ..., p

B
t ] and adapts

itself accordingly for the next input (θt → θt+1). It is worth
noting that the total evaluation process is online, and the
model only has access to the data Xt of the current stage t.
We design a dual-stream network, which optimizes different
parameters independently in each stream, to capture knowl-
edge from continual domains. Meanwhile, we explore prior
knowledge from the source pre-trained model. The frame-
work is shown in Figure 1.

3.1. High-quality Supervision Generator

We first design a pipeline for continual test-time domain
adaptation to capture discrimination and generalization. For
the convenience of expression, θt in the following mainly
refers to the parameters of the proposed network at time t,
where only the batch normalization layers are tuned. The
learning process can be denoted as follows.

pbt = Softmax(Fθt(x
b
t)),

Lce(Xt) = − 1

B

B∑
b=1

ybt log pbt ,
(1)

where pbt represents classification result of the sample b at
time t, and ybt is the supervision signal of the ith sample.
Lce represents the cross-entropy loss. Usually, we adopt
the current network output as the supervision signals, that
is, ybt = pbt . However, such signals have many limitations.
First, network-based output results are not entirely correct,
and the corresponding supervision signals contain a lot of
noise. Long-term noise accumulation may cause the net-
work to fall into a vicious cycle, causing catastrophic for-
getting and collapse problems. Thus, we need to process
ybt to improve the reliability of supervision, which will be
introduced in follows.

Selection with Self-adaptive Thresholds. First, we
adopt a confidence threshold to filter reliable labels. We
present self-adaptive thresholding that automatically de-
fines and adaptively adjusts the confidence threshold for
each class by leveraging the current predictions during
adaptation. The global threshold should represent the confi-
dence of the model, reflecting the overall learning status.
We set the global threshold τt as the average confidence
from the model, and estimate the global confidence at each
stage t. τt is defined and adjusted as:

τt =
1

B

B∑
b=1

max(ybt ). (2)

Except for the global threshold, the local threshold is
utilized to modulate the global threshold in a class-specific

fashion to account for the intra-class diversity and the pos-
sible class adjacency. We compute the expectation of the
model’s predictions on each class to estimate the class-
specific learning status:

ξt(c) =
1

B

B∑
b=1

yb,ct , (3)

where c ∈ C is the number of classes. After integrating
the global and local thresholds, we can obtain the final self-
adaptive threshold of each class c.

τt(c) =
ξt(c)

max{ξt(c) : c ∈ C}
τt. (4)

Based on such thresholds, the samples at the current batch
can be divided into two parts, the reliable part Nrel(t) =
{b|b ∈ B,max(ybt ) ≥ τt(arg max ybt )} and the unreliable
one Nunrel(t) = {b|b ∈ B,max(ybt ) < τt(arg max ybt )}.

Calibration with Source Knowledge. Second, we
attempt to distill knowledge from the source pre-trained
model to calibrate the unreliable signals. The source pre-
trained model is fully trained with labels, so even if the do-
main shift causes the classification results to be biased, it is
still a suitable feature extractor. In other words, the source
pre-trained model can still judge samples’ similarity. Based
on this, We hope to extract prior distribution from the source
pre-trained model to calibrate the unreliable results. Specif-
ically, we use the features of the source pre-trained model to
retrieve similar samples, and calculate the pseudo-labels of
these samples . To this end, we first exploit the source pre-
trained model to extract the sample features and establish a
similarity matrix.

f bt = Softmax(Fθ(x
b
t)), s

b,d
t = sim(f bt , f

d
t ), (5)

where f bt and fdt are the representations of the sample b and
d at time t. sim(·) represents the consine similarity. Here,
the set of the K nearest neighbors N b

neg(t), b ∈ Nunrel(t)
are selected by sb,dt for the sample, and the calibrated
pseudo-labels are calculated.

ybt =
1∑

d∈Nb
neg(t)

sb,dt + 1

∑
d∈Nb

neg(t)

sb,dt ∗ ydt + ybt . (6)

Diversity with Prior Distribution. Following the afore-
mentioned steps, we acquire the refined supervisory signals.
Subsequently, our objective is to learn a set of weights to as-
sess the importance of various supervisory signals. The out-
put results of the network may become biased or collapse to
a trivial solution after a narrow distribution during test time.
Therefore, we introduce a diversity criterion [20] to ensure
that diverse samples are favored compared to samples simi-
lar to the central tendency of recent model predictions. The
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diversity weighting is employed by tracking the recent ten-
dency of a model’s prediction with an exponential moving
average.

ȳt+1 = αȳt +
1− α
B

B∑
i=1

ybt , (7)

where α = 0.9. To determine a diversity weight for each
test sample, the cosine similarity between the current model
output ybt and the tendency of the recent outputs ȳt is calcu-
lated as follows.

ubt = 1− ȳ>t y
b
t

‖ybt‖‖ȳbt‖
. (8)

ubt has the advantage that if the model output is uniform,
uncertain predictions receive a smaller weight, mitigating
errors in the model. More importantly, certainty weighting
based on negative entropy is employed to avoid bias towards
specific classes.

vbt = ybt log ybt . (9)

We normalize the certainty and diversity weights to be
within the unit range, and exponentiate the product of di-
versity and certainty weights, scaled by a temperature τ .
Thus, the weight of each sample can be obtained.

wbt = exp(
ubt · vbt
τ

). (10)

After the above selection, calibration and weighting, the
objective in Eq. 1 can be reconstructed as follows.

Lce(Xt) = − 1

B

B∑
b=1

wbty
b
t log pbt , (11)

3.2. Soft-weighted Parameter Alignment

The source pre-trained model, trained on labeled data, is
more reliable and exhibits better generalization. Conse-
quently, exploring knowledge from the source pre-trained
model is crucial for our task. CoTTA employs a direct
utilization of source parameters to encompass the adapted
ones randomly, a practice that may compromise the perfor-
mance of the adapted model. To address this, we construct a
soft parameter alignment function and incorporate it into the
loss function to optimize the network. This ensures that the
network parameters are highly correlated with those of the
source pre-trained model during loss optimization, rather
than being overwritten afterward. The weights are derived
from the fitting preference of the parameters to noisy labels
(given the absence of real labels during adaptation). As a re-
sult, we anticipate that parameters susceptible to noise will
exhibit greater alignment with the parameters of the source
model, thus preventing excessive parameter deviation.

We hope that the objective function can be employed to
directly guide the parameter transfer of the source model

and the adapted one, and the Weighted Soft Parameter
Alignment can be defined as follows.

Lpa(θt) =
∑
l

1[l ∈ BN] · βl
∥∥θlt − θl∥∥22 , (12)

where l is the layer of the network and βl repressents the
similarity strength of l-th layer. We set βl = 1−e−10l

1+e−10l , which
is increased with the deeper layers.

3.3. Overall

The overall objective of our method is as follows.

L(Xt) = Lce(Xt) + λ1Lpa(θt), (13)

where λ1 is the hyperparameter. In general, we do not di-
rectly use the results of pre-trained and adapted models as
supervision signals, but apply them as prior knowledge to
calibrate pseudo-labels, and design a soft-weighted param-
eter alignment method to prevent excessive parameter devi-
ation.

4. Experiments
In this section, we evaluate the effectiveness of the proposed
method on three benchmark datasets in terms of 1) whether
the proposed label selection and correction strategies can
improve the discrimination, 2) whether our soft-weighted
alignment learns meaningful results, and 3) the parameters
analysis of the proposed method.

4.1. Datasets

We adopt CIFAR10, CIFAR100, and ImageNet as the
source domain datasets, and CIFAR10C, CIFAR100C, and
ImageNet-C as the corresponding target domain datasets,
respectively. The target domain datasets were created
to evaluate the robustness of classification networks [12].
Each target domain dataset contains 15 corruption types
with five severity levels. Following [29], for each corrup-
tion, we use 10000 images for both CIFAR10C and CI-
FAR100C datasets and 5000 images for ImageNet-C.

4.2. Implementation Details

Following [29], the corrupted images are provided to the
network online, which means these images can be utilized
to update the model only once in the adaptation process.
In addition, unlike traditional test-time adaptation methods,
which adapt to each corruption type data individually, we
adjust the source model to each corruption type sequen-
tially. We evaluate the adaptation performance immediately
after encountering each corruption type data. The total type
of corruption is 15, and the corruption level is set to the
highest level of 5 (except for the gradual experiments on
CIFAR10-to-CIFAR10C).

23735
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72.3 65.7 72.9 46.9 54.3 34.8 42.0 25.1 41.3 26.0 9.3 46.7 26.6 58.5 30.3 43.5 -
BN Stats Adapt 28.1 26.1 36.3 12.8 35.3 14.2 12.1 17.3 17.4 15.3 8.4 12.6 23.8 19.7 27.3 20.4 +23.1
Pseudo-Label 26.7 22.1 32.0 13.8 32.2 15.3 12.7 17.3 17.3 16.5 10.1 13.4 22.4 18.9 25.9 19.8 +23.7
TENT-continual [ICLR’21] 24.8 20.5 28.5 14.5 31.7 16.2 15.0 19.2 17.6 17.4 11.4 16.3 24.9 21.6 26.0 20.4 +23.1
CoTTA [CVPR’22] 24.6 21.9 26.5 11.9 27.8 12.4 10.6 15.2 14.4 12.8 7.4 11.1 18.7 13.6 17.8 16.5 +27.0
NOTE [NeurIPS’22] 7.3 7.4 12.5 20.9 13.8 15.5 34.2 34.2 39.6 25.0 11.6 24.2 29.9 14.1 12.7 20.1 +23.4
RoTTA [CVPR’23] 30.3 25.4 34.6 18.3 34.0 14.7 11.0 16.4 14.6 14.0 8.0 12.4 20.3 16.8 19.4 19.3 +24.2
RMT [CVPR’23] 24.1 20.2 25.7 13.2 25.5 14.7 12.8 16.2 15.4 14.6 10.8 14.0 18.0 14.1 16.6 17.0 +26.5
ROID [2023.6.1] 23.7 18.7 26.4 11.5 28.1 12.4 10.1 14.7 14.3 12.0 7.5 9.3 19.8 14.5 20.3 16.2 +27.3
Ours 20.7 17.1 20.2 12.1 24.3 11.6 10.9 13.8 12.9 10.5 8.1 9.3 17.9 13.4 15.3 14.5 +29.0
Source

V
iT

-b
as

e

60.1 53.2 38.3 19.9 35.5 22.6 18.6 12.1 12.7 22.8 5.3 49.7 23.6 24.7 23.1 28.2 -
CoTTA [CVPR’22] 58.7 51.3 33.0 20.1 34.8 20.0 15.2 11.1 11.3 18.5 4.0 34.7 18.8 19.0 17.9 24.6 +3.6
VDP [AAAI’23] 57.5 49.5 31.7 21.3 35.1 19.6 15.1 10.8 10.3 18.1 4.0 27.5 18.4 22.5 19.9 24.1 +4.1
ViDA [2023.6.7] 52.9 47.9 19.4 11.4 31.3 13.3 7.6 7.6 9.9 12.5 3.8 26.3 14.4 33.9 18.2 20.7 +7.5
ROID [2023.6.1] 20.8 14.5 10.5 9.3 20.3 10.2 8.3 7.9 7.4 9.6 4.1 9.2 13.0 10.9 15.5 11.4 +16.8
Ours 16.3 11.1 9.6 8.4 14.6 8.6 5.5 6.3 5.7 7.1 3.3 5.4 10.9 7.7 12.8 8.9 +19.3

Table 1. Classification error rate (%) for the standard CIFAR10-to-CIFAR10C continual test-time adaptation task. All results are evaluated
with the largest corruption severity level 5 in an online fashion. Bold text indicates the best performance. Blue is the suboptimal solution.

In our experiments, we adhere to the implementation de-
tails outlined in previous works [29] to ensure consistency
and comparability. For the classification CTTA, we em-
ploy ViT-base and ResNet [38] as the backbone. In the case
of ViT-base, we resize the input images to 224x224, while
maintaining the original image resolution for other back-
bones. For experiments involving ImageNet-to-ImageNet-
C, we conduct trials under ten diverse corruption orders.
The factor λ1 = 0.1 and K = 3 in our experiments. We
set βl = 1−e−10l

1+e−10l , where l represents the number of layers.

4.3. Baselines

We compare our method with several state-of-the-art con-
tinual test-time adaptation algorithms, the details of these
methods are as follows: 1) Source directly uses the pre-
trained model for adaptation without any specific method
for domain adaptation; 2) BN Stats Adapt keeps the pre-
trained model weights and uses the Batch Normalization
statistics from the input data of the input batch for the
prediction [16, 24]; 3) Pseudo-Label [14] picks up the
class which has the maximum predicted probability as the
pseudo-labels to update the model; 4) TENT [27] reduces
generalization error by reducing the entropy of model pre-
dictions on test data, TENT-continual is a continual learn-
ing version of TENT; 5) CoTTA [29] reduces the error
accumulation by using weight-averaged and augmentation-
averaged predictions and avoids catastrophic forgetting by
stochastically restoring a small part of the source pre-
trained weights; 6) NOTE [10] adopts an Instance-Aware
Batch Normalization to correct normalization for out-of-
distribution samples; 7) RoTTA [37] presents a robust batch
normalization scheme to estimate the normalization statis-
tics; 8) RMT [6] uses symmetric cross-entropy and con-

trastive learning to pull the test feature space closer to
the source domain; 9) ROID [20] proposes to continually
weight-average the source and adapted model, and an adap-
tive additive prior correction scheme; 10) ViDA [18] injects
visual domain adapters into the pre-trained model to adapt
the current domain distribution and maintain the continual
domain-shared knowledge.

4.4. Performance Evaluation

CIFAR10-to-CIFAR10C. Table 8 shows the classification
error rate for the standard CIFAR10-to-CIFAR10C task.
We compare our method with the eight baseline methods.
‘Gain’ represents the percentage of improvement in model
accuracy compared with the source method. CoTTA con-
siders the error accumulation to improve performance fur-
ther. As the latest proposed methods, NOTE attempts to
improve the performance of the model in different domains
from the distribution with BN. Although it performs well
in domains such as Gaussian and shot, it performs poorly
in some simple domains, such as Brightness and Contrast.
ROID has dramatically improved the overall performance
of the model. However, the model does not perform well
in some difficult domains due to the limited parameters that
can be learned. Compared with all the previous methods,
our method achieves the best results in the average error
value and most of the corruption-type data under different
backbones. It is worth mentioning that currently, only fine-
tuning the BN layer of the Transformer network is an ideal
learning strategy. Both ROID and our method achieved
good performance, but our method is obviously superior.

CIFAR100-to-CIFAR100C. Table 2 shows the classifi-
cation error rate for the standard CIFAR100-to-CIFAR100C
task. In the ResNet, BN Stats Adapt and NOTE do not bring
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Time t −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Method Backbone

G
au

ss
ia

n

Sh
ot

Im
pu

ls
e

D
ef

oc
us

G
la

ss

M
ot

io
n

Zo
om

Sn
ow

Fr
os

t

Fo
g

B
rig

ht
ne

ss

C
on

tra
st

El
as

tic
tra

ns

Pi
xe

la
te

Jp
eg Mean Gain

Source

R
es

N
et

73.0 68.0 39.4 29.3 54.1 30.8 28.8 39.5 45.8 50.3 29.5 55.1 37.2 74.7 41.2 46.4 -
BN Stats Adapt 42.1 40.7 42.7 27.6 41.9 29.7 27.9 34.9 35.0 41.5 26.5 30.3 35.7 32.9 41.2 35.4 +11.0
Pseudo-Label 38.1 36.1 40.7 33.2 45.9 38.3 36.4 44.0 45.6 52.8 45.2 53.5 60.1 58.1 64.5 46.2 +0.2
TENT-continual [ICLR’21] 37.2 35.8 41.7 37.7 50.9 48.5 48.5 58.2 63.2 71.4 72.0 83.1 88.6 91.6 95.1 61.6 -15.2
CoTTA [CVPR’22] 40.1 37.7 39.7 26.8 38.0 27.9 26.5 32.9 31.7 40.4 24.6 26.8 32.5 28.1 33.8 32.5 +13.9
NOTE [NeurIPS’22] 28.4 32.7 36.4 44.4 42.9 42.2 65.8 61.1 70.8 51.6 34.4 45.4 62.7 39.9 36.4 43.3 +3.1
RoTTA [CVPR’23] 49.1 44.9 45.5 30.2 42.7 29.5 26.1 32.2 30.7 37.5 24.7 29.1 32.6 30.4 36.7 34.8 +11.6
RMT [CVPR’23] 40.2 36.2 36.0 27.9 33.9 28.4 26.4 28.7 28.8 31.1 25.5 27.1 28.0 26.6 29.0 30.2 +16.2
ROID [2023.6.1] 36.5 31.9 33.2 24.9 34.9 26.8 24.3 28.9 28.5 31.1 22.8 24.2 30.7 26.5 34.4 29.3 +17.1
Ours 33.5 31.8 31.2 25.9 30.9 25.2 25.9 27.9 27.4 30.6 25.2 23.5 26.6 26.2 27.2 27.9 +18.5
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e

55.0 51.5 26.9 24.0 60.5 29.0 21.4 21.1 25.0 35.2 11.8 34.8 43.2 56.0 35.9 35.4 -
CoTTA [CVPR’22] 55.0 51.3 25.8 24.1 59.2 28.9 21.4 21.0 24.7 34.9 11.7 31.7 40.4 55.7 35.6 34.8 +0.6
VDP [AAAI’23] 54.8 51.2 25.6 24.2 59.1 28.8 21.2 20.5 23.3 33.8 7.5 11.7 32.0 51.7 35.2 32.0 +3.4
ViDA [2023.6.7] 50.1 40.7 22.0 21.2 45.2 21.6 16.5 17.9 16.6 25.6 11.5 29.0 29.6 34.7 27.1 27.3 +8.1
ROID [2023.6.1] 45.7 32.2 20.5 22.2 37.8 24.6 17.2 16.8 15.8 23.2 10.6 28.3 29.1 33.2 26.2 25.6 +9.8
Ours 38.2 31.8 18.2 20.8 34.3 20.3 17.5 14.9 16.2 22.9 11.5 27.5 28.2 32.5 25.3 24.0 +11.4

Table 2. Classification error rate (%) for the standard CIFAR100-to-CIFAR100C continual test-time adaptation task. All results are
evaluated with the largest corruption severity level 5 in an online fashion. Bold text indicates the best performance. Blue is the suboptimal
solution.
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97.8 97.1 98.2 81.7 89.8 85.2 78.0 83.5 77.0 75.9 41.3 94.5 82.5 79.3 68.5 82.0 -
CoTTA [CVPR’22] 84.5 82.0 80.4 81.8 79.5 69.2 58.8 60.8 61.1 48.5 36.5 67.5 47.8 41.8 45.9 63.1 +18.9
RoTTA [CVPR’23] 88.3 82.8 82.1 91.3 83.7 72.9 59.4 66.2 64.3 53.3 35.6 74.5 54.3 48.2 52.6 67.3 +14.7
RMT [CVPR’23] 79.9 76.3 73.1 75.7 72.9 64.7 56.8 56.4 58.3 49.0 40.6 58.2 47.8 43.7 44.8 59.9 +22.1
ViDA [2023.6.7] 79.3 74.7 73.1 76.9 74.5 65.0 56.4 59.8 62.6 49.6 38.2 66.8 49.6 43.1 46.2 61.2 +20.8
ROID [2023.6.1] 71.7 62.2 62.2 69.6 66.5 57.1 49.3 52.3 57.4 43.5 33.4 59.1 45.4 41.8 46.2 54.5 +27.5
Ours 70.8 60.3 60.5 65.8 55.2 55.5 46.7 49.0 50.1 40.3 34.1 56.1 42.8 40.2 43.9 51.4 +30.6
Source
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e

53.0 51.8 52.1 68.5 78.8 58.5 63.3 49.9 54.2 57.7 26.4 91.4 57.5 38.0 36.2 55.8 -
CoTTA [CVPR’22] 52.9 51.6 51.4 68.3 78.1 57.1 62.0 48.2 52.7 55.3 25.9 90.0 56.4 36.4 35.2 54.8 +1.0
VDP [AAAI’23] 52.7 51.6 50.1 58.1 70.2 56.1 58.1 42.1 46.1 45.8 23.6 70.4 54.9 34.5 36.1 50.0 +5.8
ViDA [2023.6.7] 47.7 42.5 42.9 52.2 56.9 45.5 48.9 38.9 42.7 40.7 24.3 52.8 49.1 33.5 33.1 43.4 +12.4
ROID [2023.6.1] 57.6 51.5 52.2 55.1 52.4 46.5 47.2 45.6 39.5 36.0 26.0 45.0 43.8 39.7 36.3 45.0 +10.8
Ours 47.5 42.1 41.6 55.5 55.4 44.5 47.9 38.8 37.8 39.6 23.6 57.0 44.4 33.5 32.3 42.7 +13.1

Table 3. Average error of standard ImageNet-to-ImageNet-C experiments over 10 diverse corruption sequences. All results are evaluated
with the largest corruption severity level 5 in an online fashion. Bold text indicates the best performance. Blue is the suboptimal solution.

Avg. Error (%) Source BN Adapt TENT-continual CoTTA ROID Ours
CIFAR10C 24.8 13.7 29.2 10.4 6.1 5.7

Table 4. Gradually changing setup results on CIFAR10-to-CIFAR10C. The severity level changes gradually between the lowest and the
highest. Results are the mean over ten diverse corruption type sequences. Bold text indicates the best performance. Blue is the suboptimal
solution. All results are evaluated on the ResNet.

error accumulation, but there is little room for improvement.
CoTTA considers the error accumulation problem and re-
duces the error to 32.5%. Further, the performance of our
method is better than RMT and ROID on several corrup-
tion types of data, and the average error value is reduced
to 27.8%. Obviously, ViT-base is still our first choice, its
overall performance is better than ResNet, and our method
is still ahead of existing learning strategies.

ImageNet-to-ImageNet-C. We also make experiments
on the ImageNet dataset. Following [29], we conduct
ImageNet-to-ImageNet-C experiments over ten diverse cor-
ruption type sequences in severity level 5. The average re-
sult of ten experiments is shown in Table 3. ImageNetC is
more complex than CIFAR100C and CIFAR10C, and the
overall average test error is more significant. Our method
outperforms other competing methods and reduces the av-
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Source 28.1 26.1 36.3 12.8 35.3 14.2 12.1 17.3 17.4 15.3 8.4 12.6 23.8 19.7 27.3 20.4
SST 23.3 20.4 25.0 13.8 30.5 13.9 12.8 15.5 14.6 15.4 8.0 12.4 22.4 18.2 19.4 17.7
SST+CSK 27.5 24.8 28.9 12.0 32.8 13.6 11.2 16.9 12.8 10.2 7.9 12.2 20.5 13.8 17.5 17.4
SST+DPD 25.8 22.2 27.0 11.3 29.5 13.1 10.6 15.8 12.0 10.1 7.8 12.0 19.6 13.5 15.5 16.1
SST+CSK+DPD 21.3 17.8 22.7 13.2 26.8 13.2 11.5 14.7 13.2 10.9 8.0 10.2 18.8 14.5 16.8 15.8
SST+CSK+SPA 25.5 19.1 22.2 12.1 28.3 11.9 10.9 14.7 11.9 10.6 8.5 11.6 18.5 13.2 15.9 15.6
SST+DPD+SPA 22.1 18.1 21.2 12.6 25.1 11.9 10.5 14.3 12.2 9.8 8.1 10.6 18.3 13.9 15.6 14.8
SST+CSK+DPD+SPA 20.7 17.1 20.2 12.1 24.3 11.6 10.9 13.8 12.9 10.5 8.1 9.3 17.9 13.4 15.3 14.5

Table 5. Ablation experiments of the framework for the CIFAR10-to-CIFAR10C task. ‘SST’ represents the label selection with self-
adaptive thresholds, and the unreliable part is discarded directly. ‘CSK’ is the Calibration with Source Knowledge, and ‘DPD’ is the
Diversity with Prior Distribution module. SPA is the Soft-weighted Parameters Alignment. All results are evaluated on the ResNet.

erage test error to 51.4% and 41.3% with ResNet and ViT
networks respectively.

The improvement of the model we proposed on CI-
FAR100C and ImageNet is not as significant as on CI-
FAR10C. The main reason is that as the complexity of the
category increases, the disadvantages of the limited learning
ability to fine-tune normalization layers gradually become
apparent. However, we still achieved extremely competi-
tive results through label calibration. More importantly, the
proposed model does not involve any parameter or data ex-
pansion. This efficient learning strategy is more in line with
the practical application requirements of CTTA.

Gradually Changing Setup. Following [29], we also
consider a gradually changing setup. For the standard setup,
corruption types change abruptly in the highest severity. For
the gradually changing setup, the corruption types change
is gradual. The results shown in Table 4 represent that the
proposed method achieves better performance.

4.5. Ablation Studies

We first conduct ablation experiments with the same super-
vision signals to prove the effectiveness of the proposed
framework in Table 7. For the convenience of expres-
sion, ‘SST’ represents the label selection with self-adaptive
thresholds, and the unreliable part is discarded directly.
Then, such a module is combined with label calibration
(Calibration with Source Knowledge, CSK) and diversity
reweighting (Diversity with Prior Distribution, DPD), re-
spectively. Ultimately, these three will form a versatile su-
pervisory signal generator. SPA is the Soft-weighted Pa-
rameters Alignment module. The results demonstrate that
the pseudo-label after selection and calibration strategies
can effectively suppress noisy labels and improve perfor-
mance. Moreover, diversity with prior distribution is vital
for the model. Such modules work together to build high-
quality supervision signals. Subsequently, we focus on val-
idating the proposed supervision signals module. Finally,

although we only fine-tuned the normalization parameters,
the results show that it is still necessary to use parameter
alignment. This indicates a large amount of generalization
knowledge in the source pre-trained model waiting for fur-
ther exploration.

5. Conclusion
This paper first proposes a versatile framework that gener-
ates high-quality supervision signals from two levels: relia-
bility and diversity. We calculate an independent threshold
for each class through global and local strategies to divide
pseudo-labels into reliable and unreliable parts. Then, we
propose continually capturing source knowledge using dif-
ferent strategies to guide the adapted model. To this end,
we adopt the source predictions for the unreliable pseudo-
labels to select potentially similar samples, and calibrate
the pseudo-labels for capturing diverse supervision signals.
Based on the calibrated pseudo-labels, we begin by track-
ing the recent tendency of a model’s prediction with an ex-
ponential moving average, and calculate a diversity score
to ensure the generalization for future domains. More-
over, we introduce a soft-weighted parameters alignment
that forces the adapted network to be similar to the source.
The proposed framework can optimize the current domain
efficiently and reserve generalization in future domains effi-
ciently. Finally, we evaluate the proposed method on several
benchmarks and prove its superiority.
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