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Abstract

Universal visual anomaly detection aims to identify anoma-
lies from novel or unseen vision domains without additional
fine-tuning, which is critical in open scenarios. Recent
studies have demonstrated that pre-trained vision-language
models like CLIP exhibit strong generalization with just
zero or a few normal images. However, existing meth-
ods struggle with designing prompt templates, complex to-
ken interactions, or requiring additional fine-tuning, result-
ing in limited flexibility. In this work, we present a sim-
ple yet effective method called AdaptCLIP based on two
key insights. First, adaptive visual and textual representa-
tions should be learned alternately rather than jointly. Sec-
ond, comparative learning between query and normal im-
age prompt should incorporate both contextual and aligned
residual features, rather than relying solely on residual fea-
tures. AdaptCLIP treats CLIP models as a foundational ser-
vice, adding only three simple adapters, visual adapter, tex-
tual adapter, and prompt-query adapter, at its input or out-
put ends. AdaptCLIP supports zero-/few-shot generaliza-
tion across domains and possesses a training-free manner
on target domains once trained on a base dataset. Adapt-
CLIP achieves state-of-the-art performance on 12 anomaly
detection benchmarks from industrial and medical domains,
significantly outperforming existing competitive methods.
We will make the code and model of AdaptCLIP available
at https://github.com/gaobb/Adapt CLIP.

1. Introduction

Universal visual anomaly detection (AD) aims to identify
anomaly images and segment anomaly pixels from novel
or unseen visual objects after learning a single model on
a base or seen dataset. This is a more challenging task as
it requires strong generalization when facing cross-domain
datasets. Meanwhile, it is a more practical topic as people
are more interested in fast adaptability in real-world sce-
narios, especially in low data regimes (i.e., few-shot and
even zero-shot). For example, in medical image diagno-
sis and industrial visual quality inspection, it is difficult to
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collect a large-scale dataset due to inherent scarcity and
privacy protection. Recently, developing universal visual
AD has attracted increasing attention because existing un-
supervised ADs with either separated [8, 25, 34] or unified
models [11, 48] perform poorly in unseen objects despite
promising performance on seen objects.
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Figure 1. Comparisons of state-of-the-arts and our AdaptCLIP.
v means satisfied and X means not satisfied. Our method sup-
ports zero-/few-shot (ZS and FS) visual AD across different do-
mains without fine-tuning (FT) on the target dataset. It only adds
simple adapters at CLIP’s input or output ends without complex
token interactions, thus preserving CLIP’s original ability (OA).
The AdaptCLIP using only one normal image prompt achieves
the best performance in image-level anomaly classification (I-
AUROC) and pixel-level anomaly segmentation (P-AUPR) on 12
AD benchmarks from industrial and medical domains. Moreover,
the zero-shot AdaptCLIP is also significantly better than existing
zero-shot and even some one-shot approaches. The detailed results
are reported in Tabs. | and 2. Best viewed in zoom.

To address this fragmentation, recent works have at-
tempted to design universal models to recognize anomalies
for unseen objects. They typically build on vision-language
models (i.e., CLIP [29]) benefiting from strong generaliza-
tion. WinCLIP [16] computes anomaly scores on dense
patch windows. This brings large computational costs and
memory burden, limiting high-resolution input or large pre-
trained models. AnomalyCLIP [53] learns class-agnostic
prompt embeddings to align patch-wise tokens thus avoid-
ing dense window operations. It further refines vanilla CLIP
by concatenating learnable tokens to intermediate layers of
CLIP. AdaCLIP [6] further integrates visual knowledge into
textual prompt embeddings. However, they may destroy in-
herent representations of CLIP. Therefore, we want to ex-
plore whether we can achieve the same or even better AD
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performance while maintaining the original ability.

In contrast, humans perceive anomalies when an input
significantly deviates from those normal patterns stored in
our brains. There is evidence to support this point in neuro-
science [31]. PatchCore [34] builds a memory bank storing
normal features and PaDiM [7] learns a multivariate Gaus-
sian distribution of normal features. At inference, anoma-
lies are recognized by comparing input features with the
memory bank or the learned distribution. However, these
methods usually require a certain number of normal im-
ages and thus are limited in universal (i.e., open-world)
scenarios. Two recent works, i.e., InCtrl [54] and Promp-
tAD [23], have studied how to further improve performance
with few-shot normal images. However, InCtrl only consid-
ers anomaly classification, while PromptAD needs to learn
a new model for each class. Different from them, we want
to comprehensively explore a universal AD model, aiming
to detect any anomalies in image-level and pixel-level from
cross-domains without any training on target domains.

Toward this end, we propose a simple but effective uni-
versal visual anomaly detection framework, called Adapt-
CLIP. The philosophy of AdaptCLIP is that “less and sim-
pler could be better”, and it contains three adapters de-
signed by two key insights : First, adaptive visual and tex-
tual representations should be learned alternately rather than
jointly. Second, comparative learning between query and
the corresponding normal image prompt should incorporate
both contextual and aligned residual features, rather than
relying solely on residual features. Our contributions are
summarized as follows.

e We propose a simple but effective universal visual
anomaly detection framework based on visual-language
CLIP models, which is capable of detecting any visual
anomalies at image- and pixel-level from cross-domain
datasets without any training on target domains.

e We propose visual and textual adapters, and find that
they should alternately learn adaptive visual and textual
representation guided by the powerful vision-language
representations from CLIP models.

e We propose a prompt-query adapter that aims to capture
meta-perceptual capabilities between query image and
the corresponding normal image prompt, based on their
joint distribution of contextual features of the query and
the aligned residual features between prompt and query.

e AdaptCLIP outperforms zero- and few-shot AD meth-
ods on 8 industrial and 4 medical benchmarks, as shown
in Fig. 5. Meanwhile, AdaptCLIP possesses simpler
adapters, fewer parameters, and competitive efficiency.

2. Related Works

Unsupervised ADs target to identify anomalies given
sufficient normal training images. Most unsupervised

AD methods can be roughly grouped into three cate-
gories: embedding-, discrimination-, and reconstruction-
based methods.  Embedding-based methods, such as
PaDiM [7], MDND [32], PatchCore [34], CS-Flow [35]
and PyramidFlow [19], assume that offline features ex-
tracted from a pre-trained model preserve discriminative
information and thus help to separate anomalies from nor-
mal samples. Discrimination-based methods, such as Cut-
Paste [21], DRAEM [50], and SimpleNet [25], typically
convert unsupervised AD to supervised ones by introducing
pseudo (synthesized) anomaly samples. Reconstruction-
based ADs, such as autoencoder [2, 12, 14, 40], gen-
erative adversarial networks [27, 45, 49] and reconstruc-
tion networks [24, 33, 51], assume that anomalous regions
should not be able to be properly reconstructed and thus
result in high reconstruction errors since they do not ex-
ist in normal training samples. The recent knowledge dis-
tillation [4, 8, 36, 42, 43] or feature reconstruction meth-
ods[11, 46,48, 52] train a student or reconstruction network
to match a fixed pre-trained teacher network and achieve a
good balance between effectiveness and efficiency. How-
ever, all these methods are limited to recognizing anomalies
of seen classes but often perform poorly on unseen classes.
For a novel scenario, people have to collect sufficient nor-
mal images first and then retrain a model. This is inefficient
and lacks the rapid adaptability required for practical appli-
cations.

Zero-Shot ADs have achieved impressive performance by
utilizing large vision-language models, e.g., CLIP [29].
WinCLIP [16] designs two-class textual prompts and intro-
duces multi-scale patch windows for accurate anomaly seg-
mentation. It brings large computational costs and mem-
ory burden, limiting high-resolution input or large pre-
trained models. AnomalyCLIP [53] learns class-agnostic
prompt embeddings to align patch-wise tokens thus avoid-
ing dense window operation. In addition, AnomalyCLIP re-
fines vanilla CLIP representation by appending some learn-
able tokens to the middle layer of CLIP. Recently, Ada-
CLIP [6] and VCP-CLIP [28] utilize similar ideas and fur-
ther integrate visual knowledge into textual prompt em-
beddings. We argue that these additional operations make
models more complex and may hurt the original capabili-
ties of CLIP. Instead of visual-language models, ACR [20]
and MuSc [22] perform zero-shot AD only requiring batch-
level and full-shot testing images, but they may be limited
in privacy protection scenarios. Different from these meth-
ods, we explore whether the same or even better AD per-
formance is achieved while retaining the original ability of
CLIP without any information on test data distribution.

Few-Shot ADs mainly pay attention to learning or using
only a limited number of normal images, such as TDG [37],
RegAD [15], GraphCore [44] and FastRecon [10]. Some
works [9, 47] consider another few-shot setting where a
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Figure 2. The framework of AdaptCLIP, which consists of three pluggable adapters, i.e., visual adapter, textual adapter, and prompt-query
adapter. First, the first two adapters alternately learn visual and textual representations for zero-shot anomaly detection (Sec. 3.2). The
prompt-query adapter further learns a comparison ability between query image and its corresponding normal prompt for few-shot anomaly
detection (Sec. 3.3). Once trained, it can segment any anomalies providing only few-shot and even zero-shot normal image prompts.

limited number of samples is given from anomaly images.
The performance of these methods lags behind unsuper-
vised ADs. Recently, few-shot AD performance has been
improved significantly by visual-language models. Win-
CLIP+ [16] is the first work to apply CLIP models to few-
shot AD, which stores normal tokens into a memory bank,
then retrieves the nearest token for each query token using
cosine similarity, and finally computes an anomaly map us-
ing the nearest distance. InCtrl [54] further integrates multi-
level information, including patch-level residual maps and
image-level residual features, and prior knowledge score
using two-class textual prompts, to learn a holistic scor-
ing function for anomaly classification. It does not con-
sider pixel-level anomaly segmentation. PromptAD [23]
introduces the concept of explicit anomaly margin, which
mitigates the training challenge caused by the absence of
anomaly training images. However, it requires re-training
models when applied to target datasets. In contrast, we ex-
plore jointly optimizing anomaly classification and segmen-
tation in a unified model, which can quickly adapt to novel
scenarios only given few-shot normal image prompts, not
involving additional re-training.

3. Methods

Problem Formulation: Our objective is to learn a univer-
sal AD model that detects any anomalies from diverse do-
mains without any training on target dataset. Thus, a rea-
sonable assumption is that there is a different distribution
between training and testing sets. Formally, let Dyye =
{X;,Y;, y: }}¥, be a training dataset, that consists of IV nor-
mal and anomalous images, X; € R"*"**3 is the i-th im-
age, and Y; € R" % and y; = {0, 1} is the corresponding
anomaly mask and anomaly label, with y; = O indicates
normal and y; = 1 signifies anomaly. The testing set 7

may consist of multiple different domains with various ob-
jects and anomaly types. Here, we denote the ¢-th novel do-
main as D%, = {X;, Vi, y;}*,. Under a few-shot setting,
a few normal images P. = {X;}%_, are randomly drawn
from each class of the target domain, where c is the class
index and k is typically a small number, e.g., k = {1,2,4}.
It is worth noting that P, is only available during inference,
and cannot be used in any way during training phase.

Overview: As illustrated in Fig. 2, the visual adapter adapts
patch and image tokens with fixed two-class textual prompt
embeddings. The textual adapter learns two-class prompt
embeddings to align with the fixed patch and image to-
kens. The prompt-query adapter operates in a one-prompt
meta-learning manner, leveraging the joint distribution of
query context features and the aligned residual features be-
tween the prompt and query. In a zero-shot scenario, image-
level anomaly score and pixel-level anomaly map can be
obtained using textual and visual adapters (Sec. 3.2). In
a few-shot scenario, anomaly score and map are derived
by integrating predictions from zero-shot and prompt-query
adapters (Sec. 3.3). Below we present them in detail.

3.1. Revisiting CLIP for Anomaly Detection

For a query image X7 € R'*%*3, we feed it to visual en-

coder F(-) and obtain local patch tokens {F? € R}""/P ’
and global image token f? € R<, where p is patch size.
WinCLIP [16] introduces two-class prompts describing nor-
mal and abnormal states. For example, “a photo of a nor-
mal object” and “a photo of a damaged object”. In practical
application, one could design multiple textual descriptions
for normal and abnormal states. Feeding these normal and
abnormal descriptions to textual encoder 7 (+), we can ob-
tain the embeddings of normal w,, € R? and abnormal
w, € R The pixel-level anomaly map is computed by



measuring the cosine similarities between all patch tokens
and the textual embeddings, that is

: exp({wa, F7)) !

Y= [exp(<'wa,F§>)+6XP(<"UmF;‘Z>) M

where (-) represents the cosine similarity, and [-] means that
all patch-wise prediction scores are rearranged according to
their spatial positions and interpolated to the original input
resolution. Replacing F'{ with f7 in Eq. 1, we can obtain
an image-level anomaly score ¢ for X9, that is

j= exp({wa, £%)) .
exp((wq, f9)) + exp((wn, 7))

3.2. AdaptCLIP with Alternating Learning

To adapt CLIP for universal visual anomaly detection, we
design visual and textual adapters to alternately learn visual
and textual representations. Specifically, the visual adapter
learns adaptive visual tokens (Fg/ and f?) when fixing
two-class static textual embeddings (w, and w,,), while the
textual adapter learns two-class textual prompt embeddings
(w!, and w!,) when fixing visual tokens (F'J and f7).
Visual Adapter adapts vision tokens (F'{ and f?) with
fixed textual embeddings (w, and w,). It consists of two
branches, global and local, which transform global image
token and local patch tokens, respectively. Architecturally,
the global and local branches are implemented using a sim-
ple residual multi-layer perception (MLP), that is

2

F{' = F{+MLP(F{;0,); f = f7+MLP(f;0), (3)
where 0! and 69 are learnable parameters. Replacing F'!
and f9 in Eqs. | and 2 with FY" and f%, we obtain pixel-
level anomaly map Y, and image-level anomaly score ,,.
Textual Adapter aims to directly learn two-class prompts
0.,0, € R™*?% without prompt templates, where r > 0 is
the length of prompts. We feed them into the frozen textual
encoder 7 (-) of CLIP, and obtain the corresponding embed-
dings w!, and w/,, that is

w!, =T(0,),w, =T(0,). 4)

Then, we replace the static w, and w,, in Egs. | and 2 with
the learnable prompt embeddings w’, and w?, to derive local
and global anomaly predictions, Y, and Ut

Alternating Learning or Joint Learning? A possible
question is whether we can learn visual and textual repre-
sentations jointly. That is, in Eqs. | and 2, we simultane-
ously replace fixed textual embeddings and visual tokens
with learnable prompt embeddings (w’, and w!,) and adap-
tive visual tokens (F?/ and f?). Indeed, this joint align-
ment mechanism is successful when a large-scale image-
text dataset is available. However, we empirically find that
it does not work well in the AD field, as shown in Tab. 5

(Lines 3 vs. 4). This is not surprising because the avail-
able training data scale is still relatively small and lacks
fine-grained textual annotations. The joint learning easily
overfits and leads to poor generalization on novel datasets.
In contrast, the alternating learning helps us fully utilize the
prior knowledge of the CLIP model and thus improve the
cross-domain generalization.

3.3. AdaptCLIP with Comparative Learning

Compared to static or learnable textual prompts, using a
normal image as a visual prompt is more intuitive. There-
fore, we expect to learn a comparison ability between a
query image X7 and its corresponding normal prompt X7,
which generalizes well to unseen objects. We find that ap-
plying multi-layer features yields better results. For sim-
plicity, we use a single-layer feature in the following.

Spatial Alignment: A simple way is to directly measure
their difference by the absolute value of their residual fea-
ture, that is | F'] — F|, where F'] and F? are the patch to-
ken of X7 and X7, respectively. It may fail if the query and
prompt images are not aligned in pixel space (e.g., due to
rotation and translation). Therefore, we have to align query
and prompt tokens for effective comparison. For any query
token Fg, we search the nearest one among all normal to-

kens {FPY"/P° g lidean di hat i
ens {F}}",Z'[" using euclidean distance, that is

Ff’:Fi,k:argm_inHFg*F?Hz ®)
j

Then, we take F’ as aligned prompt token of F'{. Now, we
can derive the aligned residual feature, i.e., |F'} — F% ’I.
Joint contextual and aligned residual feature: The
aligned residual feature highlights differences or anomaly
regions well. However, it may lose contextual information
or introduce noise. Intuitively, the contextual information is
critical to identify anomalies. Therefore, we aggregate the
original query tokens and the aligned residual features by
an element-wise sum,

F;=F!+|F! - F"| (6)

Prompt-Query Adapter: The ultimate goal is to achieve
pixel-level anomaly segmentation and image-level anomaly
classification. Therefore, we propose a lightweight segmen-
tation head G (-; 9;,) to learn anomaly segmentation based on
the joint feature F, that is

Y, = G(F;0,), (7

where 9; is its parameters. Specifically, the segmentation
head consists of several transposed convolution blocks fol-
lowing a 1x1 convolution layer. Here, each transposed
convolution block upsamples input feature by 2x, and it
is composed of a 3x3 convolution, a BatchNorm, a ReL U,
and a 2x2 deconvolution.



Meanwhile, we need to obtain a global image-level
prediction. First, we perform average-pooling and max-
pooling on the joint feature F' along the spatial dimension
and then take their weighted average as the global image
representation. Then, a simple MLP is used to map the
global feature to an image-level prediction score, that is

iy = MLP((AvgPool (F) + MaxPool (F))/2; 69), (8)

where ¢ is the parameter.

mnn

image_encoder and textual_encoder: frozen CLIP model
visual_adapter: learned visual adapter

theta: learned two-class prompt embeddings
prompt_query_adapter: learned prompt—-query adapter

Xq, Xp: query image and the normal image prompt

T: fixed two-class textual prompts

inference_style: 'zero-shot' or 'few-shot' (default)
wnn

# extract fixed visual and textual representations

Fg = image_encoder(Xq), W = textual_encoder (T)

# adapt visual tokens and textual embeddings, Egs. 3 and 4
Fg_a = visual_adapter(Fqg), W_a = textual_encoder (theta)

# AdaptCLIP via alternating learning for zero-shot AD
# compute anomaly map with softmax, Eq. 1

Yv = F.softmax(F.cosine_similarity (W, Fg_a))

Yt = F.softmax(F.cosine_similarity(W_a, Fq))

Y = (Yv + Yt)/2

# AdaptCLIP via comparative learning for few-shot AD
if inference_style == 'few-shot':
Fp = image_encoder (Xp)
# spatial alignment, Eqg. 5
Fp_a = Fpltorch.min((Fg - Fp)*%2) [1], dim = -1)
# joint contextual and aligned residual feature, Eq. 6
Fg_ = Fg + torch.abs(Fg - Fp_a)
# perform anomaly segmentation, Eq. 7
Yp = prompt_query_adapter (Fg_)
Y = (Yv + Yt + Yp)/3

Figure 3. PyTorch pseudocode for the inference of AdaptCLIP.

3.4. Training and Inference

During training, we use cross-entropy loss for global image
anomaly classification, and Focal and Dice losses for local
patch anomaly segmentation, which is exactly the same as
AnomalyCLIP [53]. For zero-shot inference, we average
the predictions from visual and textual adapters. For few-
shot inference, we fuse (i.e., average) all results from three
adapters, i.e., prompt-query, visual and textual adapters,
as the final predictions of AdaptCLIP. Fig. 3 shows Py-
Torch pseudocode for the pixel-level inference of Adapt-
CLIP, where W = [w,T;w,T], W, = [w,”;w!"], Fq
and F'p means the fixed F! and F?, and Fgq, and Fp,
refers the adaptive F'? and the aligned F” " Here, we omit
the image-level inference since it can be easily obtained by
replacing local patch tokens with a global image token.

4. Experiments

4.1. Experimental Setup

Datasets: We comprehensively evaluate AdaptCLIP on
multiple datasets from industrial and medical domains.

For industrial domain, we use MVTec [3], VisA [55],
BTAD [26], MVTec3D [5], DTD [I], KSDD [38],
MPDD [17], and large-scale Real-IAD [41]. In med-
ical domain, we utilize brain tumor detection datasets,
Br35H [13] and COVID-19 [30], as well as gastrointesti-
nal polyp datasets, Kvasir [18] and Endo [39]. A detailed
introduction to these datasets can be found in Appendix.
Evaluation Metrics: Following previous works, we use
AUROC for image-level anomaly classification and AUPR
for pixel-level anomaly segmentation in our main paper.
Here, we emphasize that AUPR is better for anomaly seg-
mentation, where the imbalance issue is very extreme be-
tween normal and anomaly pixels [55]. In Appendix, we
also provide detailed comparisons using all metrics, includ-
ing AUROC, AUPR, and F1 .

Training and Testing Protocol: Following Anomaly-
CLIP [53], we train AdaptCLIP using the testing data from
MVTec and evaluate zero-/few-shot performance on other
datasets. As for the evaluation of MVTec, we train Adapt-
CLIP using the testing data of VisA. For fair comparison, all
models are trained and evaluated using the same protocol.
Competing Methods: We compare our AdaptCLIP with
diverse state-of-the-art zero-/few-shot AD methods includ-
ing zero-shot WinCLIP [16], AnomalyCLIP [53], Ada-
CLIP [6], and few-shot WinCLIP+ [16], InCtrl [54] and
AnomalyCLIP+. Here, AnomalyCLIP+ is a strong base-
line we build on AnomalyCLIP [53] by adding patch-level
feature associations like WinCLIP+. More implementation
details about AdaptCLIP and competing methods can be
found in Appendix.

4.2. Comparisons with Zero-/Few-Shot Methods

Tabs. | and 2 present comparisons of AdaptCLIP to compet-
ing zero-/few-shot methods in image-level anomaly classi-
fication and pixel-level anomaly segmentation, respectively,
on 8 real-world industrial and 4 medical AD datasets. Note
that we only use image-level metrics to evaluate Br35H
and Covid due to the lack of pixel-level annotations, and
only report the results for Kvasir and Endo using pixel-level
metrics since normal images are not included in these two
datasets. Below we analyze these results in detail.

Generalization on Industrial Domain: Generally, Adapt-
CLIP significantly outperforms all competing models on al-
most all industrial datasets across three few-shot settings,
1-shot, 2-shot and 4-shot. The performance of all meth-
ods generally gets better with more image prompts. Specif-
ically, InCtrl [54] surpasses WinCLIP [16] due to addi-
tional fine-tuning on a base training dataset. Anomaly-
CLIP [53] further achieves better generalization, which ver-
ifies the importance of learning object-agnostic prompts.
AdaptCLIP exhibits superior performance, outperforming
AnomalyCLIP [53] by a large margin (about 10%-+ in pixel
AUPR and 2%+ in image AUROC), particularly on chal-



Table 1. Image-level anomaly classification comparisons with AUROC metric on industrial and medical domains. The best and
second-best results are highlighted in red and blue, respectively. The superscript! indicates that the results are our re-implementation with
the same training and testing protocol as AnomalyCLIP and our AdaptCLIP. Note that the results are averaged over all categories on each
dataset and the full results of each category are presented in Appendix, the same below.

Shots Methods ‘ Industrial ‘ Medical
| MVTec ~ VisA ~ BTAD MVTec3D DTD  KSDD MPDD RealJAD |AVG | Br3sH  Covid |AVG
WinCLIP [16] 90.4 75.5 68.2 69.4 95.1 92.9 61.5 67.0 |775| 80.5 66.4 |73.5
0 AdaCLIP' [6] 90.7 81.7 89.9 76.2 92.7 96.6 64.0 733 [83.1| 96.7 69.4 |83.0
AnomalyCLIP [53] 91.6 82.0 88.3 73.9 93.9 97.8 71.5 69.5 |[843| 942 77.7 |86.0
AdaptCLIP-Zero 93.5 84.8 91.0 78.6 96.0 98.1 73.6 742 |86.2| 94.8 86.5 [90.7
WinCLIP+ [16] 93.6+04 80.0+24 84.4+15 74.1+04 97.9+02 93.8+04 69.3+29 74.7402 |83.4|80.14+2.1 90.14+3.6 | 85.1
1 InCtrl [54] 91.3+04 83.2424 88.5+04 753+13 97.9+03 92.0+£09 73.0+£27 76.640.0 | 84.7 | 83.9+6.4 89.2453| 86.6
AnomalyCLIP+ [53]|95.2+02 86.1+0.7 88.5+0.8 76.742.1 98.0+£02 97.5+03 83.4+26 78.240.0 | 88.0 | 90.8+5.1 87.3+2.6|89.1
AdaptCLIP 94.5+05 90.5+12 93.4+00 81.7+15 98.0+00 96.9+03 83.8+22 81.8403[90.1 |93.74+24 91.8425(92.8
WinCLIP+ [16] 94.5+1.0 82.7+1.0 85.8+1.8 74.34+03 98.14+02 93.8402 69.3+23 76.140.1 | 84.3 | 81.6+0.6 91.842.5|86.7
2 InCtrl [54] 91.8409 86.3+14 86.2+2.0 754405 98.3+02 91.64+09 74.2+1.8 78.5+0.0|85.3 |86.1+1.7 89.7+5.1|87.9
AnomalyCLIP+ [53] | 95.440.1 87.840.5 89.2+1.1 78.3+1.3 98.24+0.1 97.940.2 83.44+1.5 78.3+0.0|88.6|91.5+4.0 89.3+2.7|90.4
AdaptCLIP 95.7406 92.2408 93.4402 829411 98.3+00 97.2+00 84.4+0.7 82.9+02]90.8|94.0+1.7 94.9+09|94.5
WinCLIP+ [16] 95.340.1 84.3+06 87.840.8 75.7+03 98.2+0.0 94.04+02 71.2+1.6 77.0+0.0 | 85.4 |82.3+04 92.9+2.1|87.6
4 InCtrl [54] 93.1+0.7 87.8402 67.5+24 78.1+1.1 97.7+0.1 91.6+09 78.6+23 81.840.0 | 84.5|89.1+1.2 91.444.1|90.3
AnomalyCLIP+ [53] | 96.1+0.1 88.8+0.5 90.5+1.2 79.24+1.3 98.440.1 97.840.1 86.3+18 78.440.0|89.4|91.1+44 91.443.0|91.3
AdaptCLIP 96.6+03 93.14+02 93.34+03 84.2+0.6 98.5+0.1 97.0+02 86.8+1.1 83.9+02|91.7|93.74+2.0 95.8409|94.8

Table 2. Pixel-level anomaly segmentation comparisons with AUPR metric on industrial and medical domains.

Shots Methods ‘ Industrial ‘ Medical
\ MVTec VisA BTAD MVTec3D DTD KSDD  MPDD Real-IAD \ AVG\ Kvasir Endo |AVG
WinCLIP [16] 18.2 5.4 12.9 5.3 9.8 7.1 14.1 33 9.5 27.8 23.8 |25.8
0 AdaCLIP' [6] 39.1 31.0 429 37.5 75.2 48.2 25.9 305 |41.3| 36.6 437 |40.1
AnomalyCLIP [53] 34.5 21.3 45.5 30.5 62.6 51.9 28.9 26.7 |37.7| 39.6 46.6 |43.1
AdaptCLIP-Zero 38.3 26.1 41.8 314 68.7 58.3 25.3 282 [39.7| 453 52.0 |48.7
WinCLIP+ [16] 38.34+08 15.8402 41.3+26 18.4+1.1 47.8409 19.2403 29.842.0 13.9+02 | 28.1 |27.6+29 23.6+0.1|25.6
1 InCtrl [54] 47.8+1.1 17.7+06 44.14+14 18.7+05 64.3405 26.7+07 27.9422 19.1+0.0(33.3 [22.1+1.7 20.3+3.7|21.2
AnomalyCLIP+ [53] | 40.8+0.1 24.8409 41.3+1.1 30.6+1.1 67.4+04 47.5+05 34.2+08 27.940.0|39.3 |46.9439 47.8+49|47.4
AdaptCLIP 53.7409 38.9403 60.6+1.0 40.7+06 76.9+0.1 57.8+12 33.5+2.5 36.6+0.1 | 49.8 |49.244.7 52.444.7|50.8
WinCLIP+ [16] 39.5+0.6 17.2408 42.8+13 19.1+08 48.2+09 19.0+05 30.7+1.1 14.840.1 | 28.9 |29.1+02 27.64+23|28.4
2 InCtrl [54] 49.240.7 18.5402 442408 20.34+06 644404 264425 29.241.3 20.1+0.0|34.0 |24.9+19 24.5+75|24.7
AnomalyCLIP+ [53] | 41.5+0.1 26.2+0.7 41.94+06 32.4415 68.1+02 47.64+04 353+1.1 28.14+0.0|40.1 [47.3+£29 49.64+48|48.5
AdaptCLIP 55.1+05 40.74+06 61.0+06 42.3+1.1 77.4+02 57.5+1.1 35.0+07 37.8+0.1 [ 50.9|49.0+4.1 53.1+42|51.1
WinCLIP+ [16] 41.2409 18.1+1.3 44.0404 19.9406 49.34+0.1 19.1407 32.0+02 15.4+02(29.9|29.6+08 27.7+05 |28.7
4 InCtrl [54] 50.9+03 19.2+06 44.0+02 22.2+12 64.9+03 26.0+14 31.4+08 21.0400 | 35.0 |24.7+1.6 22.34+1.0(23.5
AnomalyCLIP+ [53] | 42.4+0.0 27.5+1.1 458430 33.4+13 68.5+02 46.4+0.7 36.8+£1.0 28.2400 |41.1 459415 49.243.4|47.6
AdaptCLIP 572408 41.8406 62.3+03 44.54+03 782402 56.4+14 37.4+1.1 39.1403 | 52.1 |47.5427 52.243.1(|49.9

lenging and large-scale datasets like VisA and Real-IAD.
This reveals the power of comparative learning based on the
joint contextual and aligned residual features for universal
anomaly detection. Under zero-shot setting, AdaptCLIP-
Zero significantly outperforms SOTA AdaCLIP [6] on
anomaly classification, although it shows a slight weakness
in industrial anomaly segmentation. However, AdaptCLIP
is simpler, requires fewer learnable parameters (0.6M vs.
10.7M in Tab. 3), and generalizes better from the industrial
to the medical domain. In addition, our one-shot Adapt-
CLIP easily outperforms zero-shot AdaCLIP [6] if only one

normal image prompt is available.

Generalization on Medical Domain: Our AdaptCLIP per-
forms strongly on medical AD regardless of zero-shot or
few-shot settings when applying the same model trained
on an industrial dataset (i.e., MVTec). Surprisingly, it sig-
nificantly outperforms SOTA AdaCLIP on image anomaly
classification (i.e., 6.3% in AUROC) and pixel anomaly
segmentation (i.e., 8.6% in AUPR). Notably, our approach
still works even when replacing normal image prompts
with anomaly images. This is meaningful for some spe-
cial datasets that don’t contain any normal images, such as



Table 3. Complexity and efficiency comparisons.

Shots Methods CLIP Models Input Size # Params (M) Inf.Time (ms)
} VITB-16+240 240x240 2084+ 0.0  201.3
WInCLIPLI6]  Gimp 164240 512x512 2084+ 00 39126
AdaCLIP[6]  VIT-L/14@336px 518x518 428.8+107  212.0

0  AnomalyCLIP [53] ViT-L/14@336px 518x518 427.9+ 56 1549
VIT-B-16+240 512x512 2084+ 0.4 499
AdaptCLIP-Zero .1 /14@336px 518x518 4279+ 06 1622

A VIT-B-16+240 240x240 2084+ 0.0 3395
WInCLIPHTIOT Vit g 164240 512x512 2084+ 0.0  7434.9
InCirl [54] VIT-B-16+4240 240240 2084+ 03 3370

| AnomalyCLIP+ [53] VIT-L/14@336px 518x518 427.0+ 5.6 1586
VIT-B-16+240 512x512 2084+ 1.4 540

AdaptCLIP  ir ) /14@336px 518x518 4270+ 1.8 1682

Kvasir and Endo. Here, this success is mainly due to the
proposed spatial alignment mechanism, as well as a strong
prior assumption that anomaly pixels are mostly sparse.
Efficiency Comparison: We measure complexity and effi-
ciency by the number of parameters and the forward infer-
ence time, as shown in Tab. 3. The evaluation is performed
on one V100 GPU with batch size 32. The number of pa-
rameters of AdaCLIP and AnomalyCLIP is 17 times and
9 times that of our AdaptCLIP, respectively. Compared to
SOTA, AdaptCLIP achieves competitive inference time yet
better AD performance. When extending from zero-shot to
one-shot, AnomalyCLIP+ and our AdaptCLIP require al-
most no additional inference time, unlike earlier WinCLIP.
Qualitative Results: Fig. 4 shows some selected visu-
alizations from industrial and medical testing images us-
ing AdaptCLIP. Generally, few-shot normal image prompts
help AdaptCLIP segment anomalies more accurately and
produce fewer false positives than in a zero-shot manner.

4.3. Comparisons with Many-Shot Methods

In Tab. 4, we compare few-shot AdaptCLIP with many-
shot and full-shot unified AD models. It can be seen that
AdaptCLIP is better than the early many-shot methods, Re-
gAD [15], and comparable to the latest PromptAD [23].
It is worth noting that PromptAD [23] requires re-training
with few-shot normal images while our method remains
training-free on target domains. Furthermore, our method
outperforms full-shot methods, such as SimpleNet [25]
and UniAD [48], and is also competitive with the latest
OneNIP [11]. In short, our method has shown excellent
performance, especially in the open-world scenario for uni-
versal anomaly detection, although there is still some small
gap compared to state-of-the-art full-shot methods.

4.4. Ablation Studies

To demonstrate the effectiveness of the proposed three
adapters in AdaptCLIP, TA: Texual Adapter, VA: Visual
Adapter, and PQA: Prompt-Query Adapter, and two main
insights, alternating learning, and comparative learning
based on the joint contextual and aligned residual feature,
we conduct experiments on MVTec and VisA, and report
results in Tab. 5.

Table 4. Comparisons of image-level anomaly classification and
pixel-level anomaly segmentation (using AUROC/AUPR metric,
and the same as below) with many-shot and full-shot methods.

Methods Shots MVTec VisA BTAD

1 94.5/53.7 90.5/389 93.4/60.6
4 96.6/57.2 93.1/41.8 93.3/62.3

RegAD [15] 8 91.2/51.1 79.7/28.6 90.7/40.5
PromptAD [23] 4 96.6/52.9 89.1/31.5 -

SimpleNet [25]  full 78.2/24.8 89.2/33.1 90.3/36.2
UniAD [48] full 96.5/44.7 90.8/33.6 92.2/50.9
OneNIP [11] full 97.9/63.7 92.5/43.3 92.6/56.8

AdaptCLIP

Table 5. Ablation studies about different components.

No. Methods Shots TA VA PQA MVTec VisA
0 0 X X X 91.1/33.0 82.1/18.0
I baselines 0 v X X 922/314 829/19.7
2 0 X v X 905/394 81.0/22.1
3 joint 0 v v X 893/36.2 81.6/21.5
4 alternating 0 v v X 93.5/38.3 84.8/26.1
5 w/ocontext 1 X X V/ 62,6/ 7.0 853/28.7
6 w context 1 X X v/ 88.1/50.2 88.9/38.1
7 AdaptCLIP 1 v V v/ 942/525 92.0/38.8

Simple but effective baselines. The first baseline is the
naive CLIP (Line 0), and it is simple and effective for
zero-shot anomaly detection only using two-class textual
prompts. However, it is still weak in pixel-level anomaly
segmentation. The individual textual adapter and visual
adapter are two addtional baselines. Specifically, the textual
adapter can be seen as an extreme simplification of Anoma-
lyCLIP [53], removing the textual prompt template and tex-
tual prompt tuning. The simple textual adapter performs
better than the original AnomalyCLIP and naive CLIP in
anomaly classification, although it is slightly inferior in
anomaly segmentation (Lines O vs. 1). The visual adapter
learns adaptive local patch tokens and global image tokens
to align textual representations from CLIP in both patch
and image levels. This significantly improves pixel-level
anomaly segmentation (Lines O vs. 2).

Alternating learning is better than joint learning. We
explore the impact of alternating learning and joint learning
strategies on AdaptCLIP’s performance. Alternating learn-
ing adapts visual or textual representations independently,
while joint learning optimizes both representations simulta-
neously. As shown (Lines 3 vs. 4) in Tab. 5, the alternating
learning strategy significantly enhances the performance of
AdaptCLIP compared to joint learning. Alternating learn-
ing not only fully leverages the strong prior guidance of
CLIP’s visual and textual representations but also mitigates
the risk of over-fitting due to fine-tuning on a small train-
ing dataset. Additionally, we observe that the visual adapter



Query GT Mask 0-shot 1-shot 4-shot
Figure 4. Qualitative comparisons of our AdaptCLIP with different prompt numbers on MVTec, VisA, Real-IAD, Kvasir and Endo. More
qualitative results of AdaptCLIP can be found in Appendix. Best viewed in color and zoom.

alone excels in anomaly segmentation (Line 2), whereas the
textual adapter alone performs better in anomaly classifica-
tion (Line 1). By integrating the alternating learning into
visual and textual adapters, AdaptCLIP generally achieves
superior anomaly detection performance (Line 4).

The joint of contextual information and aligned residual
features performs better than residual features alone.
The aligned residual feature captures the distinctions be-
tween anomalous features and their corresponding normal
counterparts. It effectively eliminates features related to in-
dividual objects and may improve generalization. However,
we realize that isolated residual features may lose contex-
tual information about visual objects, resulting in degraded
model performance or even training failure (Line 5). There-
fore, we propose a joint feature learning based on both con-
textual and aligned residual features, which further signif-
icantly boosts the model’s performance (Lines 6 vs. 5).
This means contextual information is equally important for
anomaly identification. Notably, the optimal performance
for AdaptCLIP is achieved when all proposed components
are integrated (Line 7).

Effects on pre-trained CLIP models. We report zero- and
one-shot results of AdaptCLIP using different CLIP mod-
els in Tab. 6. It can be seen that a larger pre-trained model
always brings better performance, especially in image-level
classification. Furthermore, our method equipped with a
lightweight model (ViT-B-16+240) makes it possible to
achieve competitive anomaly segmentation performance.

5. Conclusion

In this paper, we introduce a universal anomaly detec-
tion task, which focuses on generalizing anomaly detection
models across domains, such as industrial and medical, and

Query GT Mask 0-shot 1-shot 4-shot

Table 6. Ablation studies about different pre-trained CLIP models.
CLIP Models Input Size Shots  MVTec VisA

ViT-B-164+240 512512 0 83.9/383 754/19.5
ViT-L/14@336px 518x518 93.5/38.3 84.8/26.1

0
ViT-B-164240  512x512 1 92.4/523 852/30.3
ViT-L/14@336px 518x518 1 9427525 92.0/3838

in open scenarios, such as zero- or few-shot settings. Once
the universal anomaly detection model is trained, it does
not need any fine-tuning on the target dataset. Compared
with single zero-shot or few-shot AD models, the universal
anomaly detection model is more flexible, supporting zero-
/few-shot inference via fixed or learnable textual prompts
and a few normal image prompts, while providing both
image-level and pixel-level anomaly predictions. We pro-
pose a universal anomaly detection framework, AdaptCLIP,
which alternately learns adaptive visual representations and
text prompt embeddings, as well as jointly learns compar-
isons based on the contextual information of query image
and the aligned residual features between the query and the
prompt. Extensive experiments on 8 standard industrial and
4 medical datasets show that AdaptCLIP significantly out-
performs current competitive models in multiple settings.

Limitation: AdaptCLIP achieves good AD performance
only given zero-/few-shot normal image prompts. However,
it could cause the model to confuse normal and abnormal in-
stances and finally result in a decreased performance when
we provide anomaly images as normal image prompts. For-
tunately, normal images are generally relatively easy to ob-
tain in practical applications. In addition, it may work using
abnormal images as visual prompts because most of the pix-
els may be normal even in anomaly images.
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6. Dataset Details

To validate the effectiveness of our method, we conduct
comprehensive experiments on 12 public anomaly detec-
tion datasets covering two domains, industrial and medical,
and three modalities, including photography, radiology, and
endoscopy. We only use two test datasets for model pre-
training and generalization evaluation on other test datasets,
and their relevant information is reported in Tab. 7. Specif-
ically, we train models using the test data from MVTec and
evaluate zero-/few-shot performance on other datasets. As
for the evaluation of MVTec, we train models using VisA’s
test data.

It should be noted that Real-IAD is the largest industrial
anomaly detection dataset consisting of diverse categories
(30 objects) and large-scale images (150k) among the uti-
lized datasets. For the medical domain, we cannot find pub-
licly available 2D medical AD datasets that include both
image- and pixel-level annotations simultaneously. There-
fore, we only report image-level classification performance
on Br35H and Covid, while providing pixel-level anomaly
segmentation performance on Kvasir and Endo.

In addition, we note that MPDD and all four medical
datasets are pose-agnostic, and KSDD may contain noise.
We empirically find that the performance of few-shot AD
methods may be limited and sometimes may be worse than
zero-shot methods on these datasets. We believe this is
a shortcoming of all few-shot normal image prompt-based
methods.

7. Implementation Details

We utilize the pre-trained CLIP (ViT-L/14@336) as the de-
fault CLIP model and extract local patch tokens from lay-
ers {6,12,18,24} and global image token from the last
layer {24}. All images are resized to a resolution of
518x518 for training and testing. Regarding the visual and
textual adapters, we only use features from the last layer
(i.e., 24) of the CLIP visual encoder, while for the prompt-
query adapter, we use features from all 4 layers. The visual
adapter is a two-layer MLP, whose hidden layer dimension
is 1/4 of the input layer, and the output layer dimension re-
mains the same as the input layer. The length r of learn-
able textual prompt embeddings is set to 12 in the textual
adapter. For the prompt-query adapter, the dimension of the
first hidden layer is set to 128, and then the dimension of
the next layer is halved until the last layer is set to 2 in both
the lightweight segmentation head and the global MLP. We
train models for 15 epochs with a learning rate of 0.001.
All experiments are conducted using PyTorch with a single

NVIDIA V100 GPU.
7.1. Competing Methods

For fair comparison, we compare state-of-the-art zero-
shot methods, such as WinCLIP [16], AnomalyCLIP [53],
and AdaCLIP [6], and few-shot methods, such as Win-
CLIP+ [16], InCtrl [54], AnomalyCLIP+, and Promp-
tAD [23], with our AdaptCLIP using the same training pro-
tocol and few-shot normal image prompts. It is worth not-
ing that the original InCtrl [54] only supports image-level
few-shot AD, and we have appropriately extended it to al-
low pixel-level few-shot AD. In addition, AnomalyCLIP+
is an extension of AnomalyCLIP introducing feature as-
sociation in WinCLIP+. In Tab. 8, we qualitatively ana-
lyze these methods in terms of capability, including zero-
shot, few-shot, image-level anomaly classification, pixel-
level anomaly segmentation, unified or separated models
and original CLIP ability, and complexity, including pre-
training, post-finetuning on target datasets, sliding win-
dows, class names, learnable-prompts and few-shot normal
image prompts. We summarize them in detail as follows.

WinCLIP [16] is the first zero-shot anomaly detec-
tion method based on a vision-language model, i.e., CLIP.
WinCLIP designs two-class textual prompts and introduces
multi-scale patch windows for accurate anomaly segmen-
tation. However, it brings large computational costs and
memory burden, limiting high-resolution input or large pre-
trained models. Note that no official implementation of
WinCLIP is available, our results are based on an unofficial
implementation.

WinCLIP+ [16] combines language- and visual-guided
predictions for better anomaly classification and segmen-
tation. The language-guided prediction is the same as in
WinCLIP. For visual-guided prediction, it first simply stores
multi-scale features from few-shot normal images into a
memory bank, and then measures the anomaly score us-
ing the distance or similarity between each query feature
and the nearest feature from the memory bank. The final
anomaly score is derived by averaging these two scores.

AnomalyCLIP [53] learns object-agnostic text prompts
that capture generic normality and abnormality in an image
regardless of its foreground objects. However, Anomaly-
CLIP requires fine-tuning on an auxiliary domain dataset
including normal and anomaly images. AnomalyCLIP is a
zero-shot anomaly detection method and it is capable of rec-
ognizing any anomalies. We use the official model to report
performance for anomaly classification and segmentation.

AnomalyCLIP+ is one of our baselines. Note that the
original AnomlayCLIP only supports zero-shot anomaly
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Table 7. Key statistics of industrial and medical datasets with different attributes. v means satisfied and X means not satified.

Domain | Dataset Modality Category # Classes Pose-Agnostic Im[:lgl(e)-l?ilv);lA l;)(;;itliilles‘,el # ;::l;al # Norma;r e;t Anomaly
MVTec Photography Obj & Texture 15 X v v 3,629 467 1,258
VisA Photography Obj 12 X v v 8,659 962 1,200
BTAD Photography Obj & Texture 3 X v v 1,799 451 290
Industrial MVTec3D  Photography Obj 10 X v v 2,656 249 948
DTD Photography Texture 12 X v v 1,200 357 947
KSDD Photography Texture 1 X v v 857 286 54
MPDD Photography Obj 6 v v v 888 176 282
Real-IAD Photography Obj 30 X v v 36,465 63,256 51,329
Br35SH  Radiology (MRI) Brain 1 v v X 0 1500 1500
Medical Covid  Radiology (X-ray) Chest 1 v v X 0 1,341 219
Kvasir Endoscopy Gastrointestinal tract 1 v X v 0 0 1,000
Endo Endoscopy Gastrointestinal tract 1 v X v 0 0 200

Table 8. Comprehensive comparisons of state-of-the-art zero-/few-shot AD methods and our AdaptCLIP in terms of capabilities and

complexity. v/ means satisfied and X means not satified.

Complexity

pre-training post-finetuning sliding-wins class-names learnable-prompts image-prompts

Capabilit;

Methods zero-shot few-shot image—cﬁs. pile—seg. unified ori-ability
WinCLIP/WinCLIP+ [16] v/ v v v v v
AdaCLIP [6] v X v v v X
InCtrl [54] X v v X X v
AnomalyCLIP [53] v X v v v X
PromptAD [23] X v v v X v
AdaptCLIP v v v v v v

NSNS x
X N X X X% %
X X X X X% N
R IR N NN
NN X N %
AR N N

detection. To achieve few-shot anomaly detection, we in-
troduce feature association based on a memory mecha-
nism, similar to WinCLIP+, to AnomalyCLIP. The final
anomaly results are also the average of zero-shot predic-
tions guided by learnable textual prompts and few-shot pre-
dictions guided by few-shot normal image prompts.

InCtrl [54] integrates multi-level information, includ-
ing patch-level residual maps, image-level residual features,
and prior knowledge score using two-class textual prompts,
to learn a holistic scoring function for anomaly classifica-
tion. However, it does not consider pixel-level anomaly
segmentation. In this paper, we simply use the patch-level
residual map as the pixel-level anomaly prediction, which
is essentially similar to WinCLIP+. It is worth noting that
InCtrl provides multiple models for different shot numbers.
We use its official models for extensive evaluation. In ad-
dition, since it does not provide a 1-shot model, we use the
2-shot model to evaluate 1-shot performance.

AdaCLIP [6] further integrates visual knowledge from
query images into textual prompt embeddings for enhancing
the interaction of visual features and textual prompt embed-
dings. Different from AnomalyCLIP, AdaCLIP trains base
models using more auxiliary datasets, including industrial
and medical, which is not conducive to cross-domain eval-
uation. For a fair comparison, we retrain AdaCLIP mod-
els using the same training protocol as AnomalyCLIP, and
conduct comprehensive evaluations on multiple datasets for
zero-shot anomaly detection.

PromptAD [23] introduces an explicit anomaly margin

to mitigate the training challenge caused by the absence
of anomaly training images. Instead of using a unified
paradigm (i.e., one model for all classes) in AnomalyCLIP
and AdaCLIP, PromptAD uses a separate paradigm (i.e. one
model for one class). Therefore, it needs to re-train a model
with few-shot normal images when applied to each class of
the target datasets. In addition, image-level anomaly classi-
fication and pixel-level segmentation models also need to be
trained separately. In this paper, we only compare Promp-
tAD with our method on MVTec and VisA because it in-
volves fine-tuning for each class of target datasets.

8. Compelete Experimental Results

In our main paper, we compare state-of-the-art meth-
ods with our AdaptCLIP using AUROC for image-level
anomaly classification and AUPR for pixel-level anomaly
segmentation. Here, we provide more comprehensive com-
parisons, including image-level anomaly classification in
AUPR and F1,,x in Tabs. 9 and 10, and pixel-level anomaly
segmentation in AUROC and Fl,,x in Tabs. 11 and 12,
respectively. To more intuitively show the performance
trends between zero-shot and few-shot methods on differ-
ent datasets, we show comprehensive comparisons using all
three metrics (AUROC, AUPR and F1,,,) for image-level
anomaly classification and pixel-level anomaly segmenta-
tion, as shown in Fig. 5. In addition, we only report the
averaged results of all categories for each dataset in our
main paper. Here, we also provide more detailed reports
in Tabs. 13, 14, 15, 16, 17, 18, 19, 20, 21, and 22 for each



category on MVTec, VisA, MVTec3d, DTD, MPDD, Real-
IAD, BTAD, KSDD, Br35H, Covid, Kvasir and Endo, re-
spectively.

9. More Visualizations

In our main paper, we only visualize some selected
examples from MVTec, VisA, Real-IAD, Kvasir and
Endo to compare zero-shot and few-shot AdaptCLIP.
Here, we show more visualizations for all 91 categories
from 8 industrial and 2 medical datasets, as shown in
Figs. 6,7,8,9, 10, 11, 12, 13, 14 and 15.
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Figure 5. Image-level anomaly classification and pixel-level anomaly segmentation comparisons of state-of-the-art zero-/one-shot methods
and our AdaptCLIP with all three metrics, AUROC, AUPR and F1,x. The one-shot AdaptCLIP utilizes a training-free manner on target

domains and achieves more accurate anomaly classification and segmentation on 8 industrial and 4 medical benchmarks.

Table 9. Image-level anomaly classification comparisons with AUPR metric on industrial and medical domains.

Shots Methods | Industrial | Medical
\MVTec VisA BTAD MVTec3D DTD KSDD MPDD Real-IAD\AVG\ Br35H Covid | AVG
WinCLIP [16] 95.6 78.7 70.9 89.6 97.7 84.9 69.2 62.9 81.2 | 822 429 |62.6
0-shot AdaCLIP! [6] 95.6 84.3 95.5 92.7 96.4 89.3 70.8 70.2 86.9 | 96.7 436 |70.2
AnomalyCLIP [53] 96.4 85.3 88.2 91.8 97.2 94.2 82.5 64.3 87.5| 942 55.5 | 74.9
AdaptCLIP 96.7 87.6 92.2 934 98.4 95.7 74.5 70.8 88.8 | 95.1 544 | 74.8
WinCLIP+ [16] 96.8+02 81.7+1.5 80.54+33 91.5+02 99.0+0.1 84.6+09 73.5+22 71.2+03 | 84.9 |79.4+19 76.9+6.4 | 78.2
1-shot InCtrl [54] 95.2+03 84.1+15 83.44+93 91.9+07 98.94+02 81.5+22 75.7+08 69.9+0.0 | 85.1 |82.6+87 65.1+56| 73.9
AnomalyCLIP+ [53] | 97.240.1 87.74+1.1 742415 924409 99.2402 95.240.1 85.64+28 76.7+0.0 | 88.5 [86.24+78 64.0+49 | 75.1
AdaptCLIP 97.540.1 92.34+09 95.8409 94.5+05 99.1+00 91.8+02 83.1+£37 80.44+02 | 91.8 |92.1+3.1 78.8+4.6| 85.5
WinCLIP+ [16] 97.3+05 84.0+07 82.54+32 91.6+0.1 99.1+0.1 84.5+0.6 73.6+20 72.7+0.1 | 85.7 |80.5+0.4 80.3+3.1| 80.4
2-shot InCtrl [54] 95.5+07 86.8+1.7 81.64+80 91.8+02 99.1+03 81.0+25 75.9+07 71.7+00 | 85.4 | 84.8429 66.2+44| 75.5
AnomalyCLIP+ [53]|97.3+0.1 89.1+0.7 75.4+15 929404 99.3+0.1 95.64+02 854424 76.9+0.0 | 89.0 | 86.8+6.2 66.7+4.5| 76.8
AdaptCLIP 97.9402 93.64+06 95.940.1 94.8404 99.2400 92.44+04 84.74+2.1 81.5+0.1 | 92.5 [92.2425 83.6+19| 87.9
WinCLIP+ [16] 97.7400 85.54+09 88.1+14 92.24+0.1 99.2+0.1 84.9+05 75.3+0.1 73.6+0.1 | 87.1 |81.0+02 81.1+£32] 81.1
4-shot InCtrl [54] 96.3+0.5 88.0+03 80.9+1.7 92.84+06 98.3+04 84.6+1.7 79.5+27 75.6+0.0 | 87.0 | 88.6+1.0 66.9+34 | 77.8
AnomalyCLIP+ [53] | 97.840.0 90.1+07 77.543.1 93.3+04 99.4+0.1 95.0+02 88.0+22 77.1+00 | 89.8 [86.3+6.5 70.7+4.7| 78.5
AdaptCLIP 98.44+02 94.3+02 96.4+0.1 95.3402 99.3+00 91.7+09 87.7+24 82.6+00 | 93.2 |91.8429 85.8+1.2| 88.8
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Figure 6. Qualitative comparisons of our AdaptCLIP with different prompt numbers on MVTec.

Table 10. Image-level anomaly classification comparisons with F1max metric on industrial and medical domains.

Shots Methods | Industrial | Medical
| MVTec  VisA  BTAD MVTec3D DTD KSDD MPDD Real-IAD |AVG | Br3SH  Covid |AVG
WinCLIP [16] 92.7 78.2 67.8 89.7 94.1 80.8 77.5 65.3 80.8 74.1 42.7 58.4
0-shot AdaCLIP! [6] 92.4 80.0 90.2 89.6 92.6 854 76.7 67.8 843 | 923 429 |67.6
AnomalyCLIP [53] 92.7 80.4 83.8 88.8 93.6 89.7 80.4 65.9 844 | 86.8 542 1705
AdaptCLIP 93.7 83.0 89.5 89.3 95.1 92.3 79.7 68.9 86.4 87.7 55.4 71.6
WinCLIP+ [16] 94.0+04 81.3+08 77.14+35 90.3+02 96.7+03 80.1+1.6 81.5+09 69.5+0.1 | 83.8 |75.2+1.8 71.7+55| 73.5
L-shot InCtrl [54] 93.9+04 83.1+14 81.54+56 89.8+03 97.7+0.1 80.3+12 80.9+22 70.8+0.0 | 84.8 |78.1+2.7 65.4+3.0]| 71.8

AnomalyCLIP+ [53] | 94.64+0.2 83.2406 76.64+08 90.1+05 97.2404 93.0+13 84.74+13 70.6+0.0 | 86.3 |86.3+49 58.7+6.1| 72.5
AdaptCLIP 95.040.0 86.5+1.0 91.6+1.0 91.0+03 97.2+0.1 89.64+0.5 85.3+13 73.3+02 | 88.7 [87.8432 73.1+6.6| 80.5

WinCLIP+ [16] 94.5+04 82.3+1.1 78.7+29 90.3+02 97.0+0.1 80.3+2.0 81.0+12 70.3+0.1 | 84.3 |76.44+03 75.1+2.0] 75.8
InCtrl [54] 94.2+02 84.3+13 81.4+58 90.0+02 97.9+0.1 80.5+02 81.4+17 72.1+00 | 85.2 |78.4+12 65.8+15]| 72.1

2-shot AnomalyCLIP+ [53] | 94.9+0.1 84.5+05 77.2405 90.2+04 97.7+0.1 93.6+1.0 84.8405 70.7+0.0 | 86.7 |86.9+4.1 61.7+58| 74.3
AdaptCLIP 95.44+0.1 88.0+07 91.7+05 91.24+02 97.7+0.1 89.4+09 85.7+0.7 74.24+0.1 | 89.2 | 88.3+2.0 78.7+24 | 83.5
WinCLIP+ [16] 94.8+0.1 82.8+0.6 83.8403 90.4+01 97.1+0.1 81.0+22 82.0+04 70.8+0.0 | 85.3 |76.7+02 75.8423| 76.3
4-shot InCtrl [54] 947402 85.1+02 87.5+0.1 90.54+03 98.1+0.1 78.7+1.1 84.5+05 74.2400 | 86.7 |82.7+1.1 67.0+43| 74.9

AnomalyCLIP+ [53] | 95.540.1 85.2403 78.941.1 90.0403 97.9402 92.5409 85.24+1.0 70.8+0.0 | 87.0 |86.6+4.3 66.0+5.4 | 76.3
AdaptCLIP 96.0+0.0 88.5+02 92.1+04 91.3403 97.8+0.1 88.6+1.7 87.8400 75.2+0.1 | 89.7 |88.3+23 81.2+1.1| 84.8
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Figure 7. Qualitative comparisons of our AdaptCLIP with different prompt numbers on BTAD.
Table 11. Pixel-level anomaly segmentation comparisons with AUROC metric on industrial and medical domains.

Shots Methods | Industrial | Medical
\MVTec VisA BTAD MVTec3D DTD KSDD MPDD Real-IAD\AVG\ Kvasir  Endo |AVG
WinCLIP [16] 82.3 73.2 72.7 91.2 79.5 93.0 71.2 84.5 81.0 | 69.7 68.2 | 69.0
0-shot AdaCLIP! [6] 88.3 95.7 91.6 97.1 98.3 97.6 95.5 96.1 95.0 | 77.8 83.8 | 80.8
AnomalyCLIP [53] 91.1 95.5 94.2 96.2 97.9 98.1 96.5 95.1 95.6 | 79.0 842 | 81.6
AdaptCLIP 90.9 95.7 93.8 97.2 97.7 98.1 95.9 94.9 95.5 | 82.1 86.5 | 84.3
WinCLIP+ [16] 934402 94.74+0.1 95.6+02 96.8402 96.5+0.1 97.6+0.1 94.7+£13 95.0+00 | 95.5 |73.1+26 72.3+03| 72.7
L-shot InCtrl [54] 94.64+02 89.0+02 96.6+0.1 94.4+02 98.6+0.1 97.8+02 94.4+10 954400 | 95.1 |65.84+1.3 66.5+6.2| 66.2
AnomalyCLIP+ [53] | 92.840.0 96.44+0.1 95.3403 96.64+0.1 97.6+0.1 98.64+0.1 97.4402 96.5+00 | 96.4 |81.3+04 84.8+15| 83.1
AdaptCLIP 94.34+0.1 96.8400 96.6+02 97.740.0 97.4+00 98.2+0.1 97.4+02 97.1+00 | 96.9 |83.3+05 86.5+12| 84.9
WinCLIP+ [16] 93.84+0.1 95.1+0.1 95.74+01 96.9+02 96.6+0.1 97.6+0.1 94.2+02 95.3+0.0 | 95.7 | 74.6+05 75.5+16]| 75.1
2-shot InCtrl [54] 95.2+02 89.8+02 96.7+0.1 94.7+01 98.7+0.1 97.6+0.6 94.3+02 96.0+0.0 | 95.4 |70.0+09 70.2+6.1 | 70.1
AnomalyCLIP+ [53] | 92.940.1 96.74+0.1 95.5402 96.840.1 97.740.1 98.64+0.1 97.540.1 96.6+0.0 | 96.5 [81.7+1.0 85.1+1.4 | 83.4
AdaptCLIP 94.5400 97.1+00 96.74+0.1 97.8400 97.640.0 98.14+0.1 97.74+00 97.3+0.0 | 97.1 | 83.5+08 86.6+1.1| 85.1
WinCLIP+ [16] 942402 95.1£02 959401 97.040.1 96.8+£0.1 97.5+02 94.7+03 95.5+00 | 95.8 |75.0+08 75.3+03| 75.2
4-shot InCtrl [54] 95.8402 90.24+02 96.840.0 95.240.1 98.7+0.1 97.5+£03 95.1+05 96.4+0.0 | 95.7 |70.6+12 69.4+1.3| 70.0
AnomalyCLIP+ [53] | 93.240.1 96.94+0.1 95.74+0.1 97.0+0.1 97.840.0 98.6+0.1 97.840.1 96.7+0.0 | 96.7 |81.3+04 84.54+09 | 82.9
AdaptCLIP 94.840.1 97.34+00 96.8400 98.0+0.0 97.8+0.1 98.0+£0.1 97.9+0.1 97.4+00 | 97.3 |83.0+05 85.840.7 | 84.4

Table 12. Pixel-level anomaly segmentation comparisons with F1max metric on industrial and medical domains.

Shots Methods | Industrial | Medical
\MVTec VisA BTAD MVTec3D DTD KSDD MPDD Real-IAD\AVG\ Kvasir  Endo |AVG
WinCLIP [16] 24.8 8.8 18.3 10.0 15.7 15.5 15.3 7.7 145 | 35.7 329 | 343
0-shot AdaCLIP! [6] 42.1 36.9 46.6 422 70.7 38.7 29.5 354 428 | 442 48.7 | 46.5
AnomalyCLIP [53] 38.0 28.1 49.4 36.0 62.2 56.5 34.0 34.5 423 | 46.1 50.3 | 482
AdaptCLIP 432 32.6 46.3 36.1 63.6 58.1 29.9 35.6 432 | 50.6 545 | 52.6
WinCLIP+ [16] 42.04£08 22.9402 46.8423 24.840.7 50.7+£07 29.2+02 31.1+22 21.84+02 | 33.7 |39.0+19 36.8+03| 37.9
1-shot InCtrl [54] 51.0+£1.6 252404 49.9+13 253407 62.9405 38.0+0.6 29.9+1.7 27.04+00 | 38.7 |33.2+1.1 33.0+3.7| 33.1
AnomalyCLIP+ [53] | 45.740.2 34.64+06 45.7+14 36.94+1.1 66.5+05 51.8403 37.8409 35.9+00 | 44.4 [50.1+1.1 53.2423| 51.7
AdaptCLIP 54.0+07 44.6+04 58.7+07 43.7+0.7 72.4+02 58.4+05 36.4+24 42.54+01 | 51.3 |52.1+07 552420 53.7
WinCLIP+ [16] 432407 24.3+08 48.1+1.1 25.5+05 51.0+0.7 29.6+0.1 32.0+13 23.0+0.0 | 34.6 |40.24+0.6 39.1+09 | 39.7
2-shot InCtrl [54] 52.3+08 26.3+05 49.94+08 27.0+05 63.0+04 37.5+2.1 31.0+£12 28.0+00 | 39.4 |36.4+04 35.2+42 35.8
AnomalyCLIP+ [53] | 46.340.1 36.0+05 46.24+13 38.54+14 66.9403 51.9405 38.9408 36.0+0.0 | 45.1 [50.64+1.9 54.142.1| 52.4
AdaptCLIP 55.0403 46.1+04 58.8404 454411 72.8403 58.1+06 38.2402 43.4+02 | 52.2 [52.64+14 55.841.7| 54.2
WinCLIP+ [16] 44.64+06 253412 49.54+07 26.3+05 51.7+02 29.9+08 33.5+04 23.94+03 | 35.6 [40.7+08 39.2+0.2 | 40.0
4-shot InCtrl [54] 54.1+04 27.240.6 50.3+£07 289410 63.1+02 36.7+1.0 33.6+1.9 29.04+00 | 40.4 |36.9+08 34.6+14| 35.8
AnomalyCLIP+ [53] | 47.1+0.1 37.5409 49.6+12 39.44+10 672401 51.2406 40.14+1.1 36.2+0.0 | 46.0 [ 50.1+08 53.84+1.6| 52.0
AdaptCLIP 56.8407 47.24+05 59.6+02 47.6+02 73.5+£0.1 57.2+07 40.7+£11 44.6+03 | 53.4 |52.1+08 55.6+12| 53.9




Table 13. Image-level anomaly classification and pixel-level anomaly segmentation results on MVTec with zero-shot and few-shot Adapt-
CLIP.

Shot Catergoies Anomaly Classification Anomaly S tation
I-AUROC I-AUPR I-Flmax P-AUROC P-AUPR P-Flimax
carpet 100.0 99.9 100.0 99.2 68.2 67.2
bottle 90.7 97.1 90.8 92.4 60.3 56.4
hazelnut 94.8 97.0 92.4 97.6 51.0 53.7
leather 100.0 99.9 99.5 99.1 27.9 43.7
cable 83.6 89.9 82.5 76.6 15.6 24.7
capsule 95.2 99.0 95.0 95.8 354 40.2
grid 98.9 99.5 97.3 97.4 27.5 39.7
0-shot pill 86.8 97.0 93.9 89.9 33.1 35.2
transistor 88.7 87.1 81.1 69.3 15.6 19.5
metal_nut 93.7 98.3 94.7 76.5 27.6 345
screw 859 93.8 90.3 97.9 28.8 34.5
toothbrush 86.4 92.5 95.1 87.7 13.5 229
zipper 99.3 99.8 98.3 91.8 44.4 47.7
tile 99.6 99.7 98.2 95.8 68.2 67.8
wood 98.7 99.5 96.7 96.9 57.5 60.9
mean 93.5 96.7 93.7 90.9 38.3 432
carpet 100.0+0.0 100.0+0.0 100.0+0.0 99.2+0.0 71.3+0.2 68.4+0.1
bottle 99.1+0.1 99.7+0.0 97.7+0.6 95.6+0.0 75.1+£03 71.1+04
hazelnut 99.9+0.1 99.9+0.0 99.3+0.6 98.9+0.0 74.7+05 70.3+04
leather 100.0+0.0 100.0+0.0 100.0+0.0 99.6+0.0 60.2+0.6 60.8+0.2
cable 88.7+2.0 92.941.3 85.9+0.8 88.3+0.7 40.7+0.9 427411
capsule 90.0+5.2 97.7+1.3 95.5+1.2 97.3+0.1 40.4+6.0 437439
grid 92.2+1.0 97.4+03 90.2+0.6 96.5+0.3 35.9+03 43.6+04
L-shot pill 92.6+0.5 98.1+0.2 95.2+03 93.3+0.1 55.3+03 55.3+03
transistor 94.8+1.6 93.3+1.7 89.0+1.8 74.6+04 25.7+1.6 26.9+1.4
metal_nut 99.2+04 99.8+0.1 98.7+0.2 89.0+03 64.9+13 62.2+0.9
screw 74.0+£3.8 88.242.0 87.440.1 97.5+0.1 19.5+38 25.143.9
toothbrush 90.7+1.2 96.0+0.2 92.6+3.0 97.6+02 47.8£1.0 49.9+05
zipper 98.1+£0.3 99.5+0.1 97.9+03 93.5+0.1 49.9+05 52.1+03
tile 99.5+0.1 99.8+0.0 97.5+03 96.1£0.0 72.3+0.1 68.7+0.0
wood 99.7+0.1 99.9+0.0 98.7+0.8 97.1+02 72.3+0.6 68.6+0.3
mean 94.5+0.5 97.5+0.1 95.0+£0.0 94.3+0.1 53.7+0.9 54.0+0.7
carpet 100.0+0.0 100.0+0.0 100.0+0.0 99.3+0.0 71.3+04 68.5+0.1
bottle 99.2+0.2 99.7+0.0 98.1+0.4 95.840.0 75.9+04 72.0+0.3
hazelnut 99.8+0.2 99.9+0.1 98.8+0.9 98.9+0.0 74.0+0.9 70.1+03
leather 100.0+0.0 100.0+0.0 100.0+0.0 99.6+0.0 60.5+0.6 60.8+0.1
cable 90.5+1.3 94.2+09 88.2+1.2 88.6+0.0 41.9+038 44.1£1.0
capsule 94.3+49 98.7+12 96.3+1.1 97.5+02 45.3+59 47.0+4.1
grid 93.2429 97.7+1.0 91.2425 97.4+04 37.8+22 44.5+10
2-shot pill 93.3+02 98.2+0.1 95.5+03 93.3+0.2 554+12 55.6+1.2
transistor 95.1+0.5 93.3+0.7 87.5+0.7 75.0+03 26.0+1.0 26.84+0.9
metal_nut 99.4+0.5 99.940.1 98.9+04 89.5+0.2 66.8£1.2 64.3+13
screw 79.24+2.7 9l.1+14 87.8+0.6 97.9+0.1 22.84+23 28.1422
toothbrush 93.5+4.7 97.242.0 94.7+4.0 98.1+0.5 53.4+6.2 54.2+438
zipper 98.2+0.0 99.5+00 97.9+03 93.7+0.0 50.24+03 52.0403
tile 99.4+0.0 99.8+0.0 97.5+03 96.2+0.0 72.4+0.1 68.8-+0.1
wood 99.7+0.1 99.9+0.0 98.9+0.4 97.3+0.1 72.8+0.6 68.8+0.2
mean 95.7+0.6 97.9+02 95.4+0.1 94.5+0.0 55.1+0.5 55.0+03
carpet 100.0+0.0 100.0+0.0 99.6+0.3 99.2+00 71.4+03 68.440.2
bottle 99.5+0.2 99.8+0.0 98.2+03 95.9+0.0 76.4+04 72.6+0.4
hazelnut 99.9+0.0 100.0+0.0 99.5+0.3 98.9+0.0 74.8+0.9 70.9+0.6
leather 100.0+0.0 100.0+0.0 100.0+0.0 99.6+0.0 60.9+0.6 60.9+0.3
cable 92.1+0.7 95.3+0.4 88.5+0.5 88.8+0.4 44.0+0.6 45.9+1.0
capsule 97.5+04 99.5+0.1 97.1+05 97.640.1 49.4+1.0 49.8+1.0
grid 95.0+2.2 98.3+0.7 93.042.1 97.5+04 40.0+2.6 449+13
4-shot pill 94.0+0.1 98.3+0.1 95.9+0.1 93.4+0.0 56.0+0.4 56.7+0.6
transistor 95.5+13 94.0+2.0 89.4+0.9 76.1+02 27.1+04 27.9+05
metal_nut 99.5+0.5 99.9+0.1 98.9+0.4 90.2+0.2 69.9+£1.1 67.9+14
screw 82.6+3.5 92.842.0 89.2+1.6 98.240.1 30.1+25 34.2421
toothbrush 96.6+4.3 98.4+2.0 96.9+2.5 98.8+04 62.5+7.9 62.6+7.1
zipper 98.3+0.2 99.5+0.0 98.040.2 93.8+0.0 50.1+0.2 51.940.1
tile 99.3+0.1 99.7+0.0 97.4+02 96.3+0.0 72.6+0.1 68.9+0.0
wood 99.8+0.0 99.9+0.0 99.2+0.0 97.3+02 73.1+05 68.9+0.3
mean 96.6+£0.3 98.4+0.2 96.0-£0.0 94.840.1 57.2+0.8 56.8+0.7




Table 14. Image-level anomaly classification and pixel-level anomaly segmentation results on VisA with zero-shot and few-shot Adapt-
CLIP.

Shot Catergoies Anomaly Classification Anomaly Segmentation
I-AUROC I-AUPR I-Flyax P-AUROC P-AUPR P-Flmax
candle 87.4 90.5 81.4 98.7 21.6 352
capsules 93.9 96.8 91.6 94.2 334 44.1
cashew 86.1 94.0 84.0 934 22.1 27.2
chewinggum 96.7 98.7 96.4 99.5 82.7 77.8
fryum 91.5 95.9 88.5 95.3 26.5 33.6
macaronil 83.3 85.1 75.6 98.1 16.4 23.0
0-shot macaroni2 69.9 69.2 71.5 98.2 2.2 6.4
pebl 84.1 86.1 80.4 96.2 15.7 24.6
peb2 64.6 67.8 69.9 93.0 124 20.0
pcb3 65.3 72.0 67.3 87.9 4.6 104
pcb4 97.7 97.5 93.5 95.3 31.9 36.8
pipe_fryum 96.7 98.0 95.6 98.4 44.0 524
mean 84.8 87.6 83.0 95.7 26.1 32.6
candle 92.940.9 94.0+0.6 87.9+1.1 98.94+0.0 23.7+1.0 37.6+14
capsules 94.0+0.3 96.540.1 90.7+0.6 96.84+0.6 29.0+2.5 36.1+£1.7
cashew 96.2+0.5 98.3+0.2 93.2+0.7 92.8+0.7 46.7+1.1 53.8+0.7
chewinggum 98.140.0 99.240.0 96.3+0.5 99.7+0.0 81.5+03 76.4+04
fryum 96.3+0.6 98.4+03 93.2+12 96.7+0.0 412414 45.8+0.9
macaronil 93.2+0.6 94.2+0.7 85.1+03 99.0+0.0 27.0+1.3 33.9+0.6
1-shot macaroni2 74.7+25 79.3+12 71.0+1.8 98.5+0.2 14.24+0.7 25.640.2
pebl 83.6+12.6 84.6+9.4 80.4+7.7 98.3+0.0 57.9422 58.5+1.3
pcb2 82.4+09 85.2+0.8 76.1+1.4 94.74+0.2 18.940.6 28.94+0.7
pcb3 79.5+35 81.8+3.0 743+£15 91.840.0 28.8+0.9 34.6+2.1
pcb4 95.6+3.6 95.942.4 90.7+52 95.84+0.1 34.6+3.1 38.6+24
pipe_fryum 99.6+0.1 99.740.1 98.540.0 99.24+0.2 63.4+43 65.6+2.7
mean 90.5+1.2 92.3409 86.5+1.0 96.840.0 38.9+0.3 44.6+0.4
candle 95.0+0.5 95.3+03 89.1+0.8 98.9+0.0 24.1+0.8 38.0+0.7
capsules 94.5+1.0 96.7+04 91.9+08 97.4+03 329417 39.0£1.0
cashew 96.0+0.3 98.2+0.1 93.2+06 93.4+0.6 46.9+15 54.0+12
chewinggum 98.5+0.0 99.3+0.0 96.7+0.6 99.6+0.0 81.84+04 76.6+0.2
fryum 96.4+0.1 98.5+0.0 94.0+0.7 96.9+0.1 42.0+16 46.3+15
macaronil 91.8+038 93.3+0.9 85.1+1.0 99.0+£0.0 26.141.0 329417
2-shot macaroni2 76.843.7 81.5+25 72.1425 98.84+0.2 15.240.6 26.34+0.7
pebl 91.6+2.5 90.6+2.0 84.9+3.6 98.6+0.1 65.245.8 64.3+4.7
pcb2 84.9+29 87.2423 78.242.7 95.3+0.2 20.9+0.3 30.8+0.3
pcb3 83.9+19 85.4+2.1 78.4+0.7 92.140.0 33.3409 39.0+0.7
pcb4 97.8+0.9 97.6+0.7 93.4+19 96.4+0.2 38.3+£34 41.843.0
pipe_fryum 99.6=+0.1 99.74+0.0 98.0+0.4 99.2+0.1 61.8+0.3 64.5+0.5
mean 92.2+038 93.6+0.6 88.0+0.7 97.1+0.0 40.7+0.6 46.1+04
candle 96.0+0.1 95.8+0.2 90.3+03 98.9:+0.0 24.0+0.6 37.8+04
capsules 95.2+0.5 97.0+0.2 92.5+0.9 97.7+0.2 34.0+1.0 39.7+0.5
cashew 95.9+0.1 98.24+0.0 93.6+0.2 93.6+0.5 46.4+13 54.3+1.0
chewinggum 98.4+0.2 99.340.1 96.5+0.4 99.640.0 81.8+0.6 76.6+0.4
fryum 96.9+0.3 98.7+0.1 94.8+0.0 96.9+0.1 42.441.0 46.3+1.0
macaronil 93.0+0.7 94.4+0.6 86.5+0.7 99.0+0.0 27.4+19 33.7+13
4-shot macaroni2 79.642.3 83.9+15 72.64+2.3 99.1+0.1 16.340.4 27.440.1
pebl 92.04+2.4 91.0+1.8 84.9+25 98.640.1 67.5+4.7 66.243.8
pcb2 86.5+£15 88.3+12 79.0+25 95.6+0.0 23.0+0.2 32.7+02
pcb3 84.8+1.2 86.6+0.7 78.2+15 92.340.0 36.340.6 42.7+03
pcb4 98.840.3 98.44+04 95.540.6 96.840.1 40.2432 43.4+3.0
pipe_fryum 99.7+0.0 99.7+0.0 98.2+0.2 99.3+0.0 62.6+0.4 65.3+0.1
mean 93.1+02 94.340.2 88.5+02 97.340.0 41.8+0.6 47.2+05




Table 15. Image-level anomaly classification and pixel-level anomaly segmentation results on MVTec 3D with zero-shot and few-shot
AdaptCLIP.

Shot Catergoies Anomaly Classification Anomaly Segmentation
I-AUROC I-AUPR I-F1ax P-AUROC P-AUPR P-F1yax
bagel 934 98.4 92.7 99.6 73.1 67.2
cable_gland 73.6 92.4 90.2 98.2 30.1 33.6
carrot 78.7 94.7 91.3 98.1 24.5 314
cookie 72.7 92.0 88.0 96.3 429 44.2
tire 78.9 93.7 87.4 97.9 29.7 36.7
0-shot rope 76.8 90.2 81.5 96.9 27.2 29.8
foam 81.2 95.0 89.9 89.9 23.7 324
dowel 74.0 91.1 90.1 96.6 5.8 11.9
peach 86.5 96.4 91.9 99.1 27.5 374
potato 70.8 90.0 89.8 99.4 29.9 36.8
mean 78.6 93.4 89.3 97.2 314 36.1
bagel 95.94+1.0 99.0+0.2 95.0+1.2 99.6+0.0 77.0+04 71.2+0.2
carrot 85.342.1 96.5+0.6 92.14+0.8 99.240.0 40.2+1.1 44.3+0.7
dowel 68.6+5.6 89.642.5 89.740.7 97.1+0.1 9.740.5 14.34+04
potato 76.4+2.1 92.1+03 90.4+0.4 99.5+0.1 41.545.0 46.443.7
rope 95.3+3.1 98.0+1.3 93.4+28 98.0+0.4 40.6+1.2 46.0+0.5
1-shot cable_gland 70.544.2 91.5+1.6 90.2404 97.74+0.1 22.04+43 28.045.9
cookie 74.740.4 92.240.3 88.340.2 97.5+0.2 53.0+38 51.7+36
foam 79.7+18 94.5+0.6 90.240.9 89.640.4 32.74+0.4 42.840.2
peach 88.442.1 97.0+0.5 91.8+0.6 99.340.0 48.8+1.8 48.7+2.0
tire 82.0+£2.0 94.440.6 88.8+0.8 98.840.0 41.3+12 44.34+1.1
mean 81.7+15 94.540.5 91.0+0.3 97.740.0 40.740.6 43.740.7
bagel 96.940.7 99.34+0.2 95.741.0 99.7+0.0 76.840.7 71.3+05
carrot 86.8+1.4 97.1+0.3 92.340.7 99.140.0 41.0+2.0 45.0+15
dowel 69.6+6.2 89.94238 89.440.4 97.3+0.4 10.442.3 15.042.9
potato 77.0+0.5 92.0+0.2 90.3+0.2 99.6+0.0 43.342.1 48.3+0.6
rope 96.0+2.5 98.3+1.0 93.6+2.0 98.1+0.2 41.340.8 47.04+04
2-shot cable_gland 71.34+39 91.6+15 90.340.5 97.8+0.2 25.6+18 32.243.1
cookie 77.540.8 93.3+0.2 88.54+0.3 97.740.1 56.840.7 55.6+0.4
foam 80.6+1.6 94.7+0.5 91.0+0.5 90.1+0.3 33.2403 42.940.0
peach 90.1+12 97.5+0.3 92.240.4 99.440.1 52.446.1 51.3+48
tire 83.3+24 94.940.8 89.2+0.8 98.940.0 42.74+1.0 45.640.8
mean 82.9+1.1 94.840.4 91.240.2 97.840.0 42.34+1.1 45.441.1
bagel 96.940.2 99.340.0 95.9+05 99.7+0.0 77.24+14 71.5+1.1
carrot 88.340.3 97.4+0.2 92.740.3 99.040.0 43.4+0.1 47.9+05
dowel 73.9+36 91.0+0.8 90.340.9 98.0+0.2 15.443.4 21.1+3.4
potato 78.8+1.2 92.9+0.6 90.2+0.6 99.6+0.0 44.74+1.9 49.3+0.8
rope 96.0+0.7 98.3+0.3 92.5+0.9 98.1+0.1 41.241.0 47.240.8
4-shot cable_gland 75.6+1.1 93.2+04 90.740.6 98.4+0.2 33.2424 38.5+1.3
cookie 79.2+1.6 93.8+0.4 89.0+0.8 97.840.0 57.9+0.5 56.840.7
foam 80.0+1.7 94.6+0.5 91.040.7 90.5+0.2 33.440.1 43.0+0.2
peach 90.040.9 97.5+0.2 92.240.6 99.440.0 54.7+49 53.2432
tire 83.4+13 95.240.4 88.4+0.5 98.940.0 44. 1411 46.840.8
mean 84.2+0.6 95.340.2 91.34+03 98.0+0.0 44.5403 47.640.2




Table 16. Image-level anomaly classification and pixel-level anomaly segmentation results on DTD with zero-shot and few-shot Adapt-
CLIP.

Shot Catergoies Anomaly Classification Anomaly Segmentation
I-AUROC I-AUPR I-F1ax P-AUROC P-AUPR P-Flnax
Woven_001 100.0 99.8 100.0 99.8 78.2 71.7
Woven_127 94.8 95.4 88.4 94.5 54.0 54.6
Woven_104 98.9 99.7 98.1 95.2 67.6 64.8
Stratified_154 98.1 99.5 96.4 99.6 77.6 68.9
Blotchy_099 98.3 99.4 99.4 99.5 79.7 69.4
Woven_068 97.0 98.3 93.0 98.7 55.8 534
0-shot Woven_125 100.0 99.9 100.0 99.5 73.9 66.4
Marbled_078 99.1 99.7 98.1 99.2 75.4 67.5
Perforated_037 93.7 98.4 93.9 93.5 62.3 61.7
Mesh_114 85.6 94.2 84.7 93.7 58.0 58.1
Fibrous_183 98.8 99.6 97.5 99.1 68.8 60.7
Matted_069 87.3 96.7 91.2 99.5 73.6 65.8
mean 96.0 98.4 95.1 97.7 68.7 63.6
Woven_001 100.0+0.0 99.8+0.0 100.0+0.0 99.6+0.1 78.9+0.5 74.140.2
Woven_127 97.4+1.0 98.2+0.6 95.6+1.3 93.2+05 57.6+19 59.8£1.9
Woven_104 98.2+0.4 99.6+0.1 97.1+03 94.8+0.6 67.6+0.8 66.1+0.5
Stratified_154 99.4+0.4 99.840.1 98.1+0.9 99.7+0.0 84.340.8 74.6+1.2
Blotchy_099 100.040.0 99.940.0 99.8+0.3 99.94+0.0 92.140.1 85.8+0.0
Woven_068 96.5+1.0 98.2+0.6 93.9425 96.8+0.3 64.8+2.9 60.4+2.7
1-shot Woven_125 100.0+0.0 99.9+0.0 100.0+0.0 99.7+0.0 84.6+0.1 76.8+0.0
Marbled_078 100.0+0.0 99.9+0.0 100.040.0 99.6+0.0 87.1+0.5 80.4+0.6
Perforated_037 95.1+1.0 98.840.2 94.1+1.2 93.0+0.5 67.4+0.9 65.1+05
Mesh_114 90.0+0.4 96.2+0.2 89.4+0.3 92.8+0.1 58.8+0.5 59.5+05
Fibrous_183 100.040.0 99.9+0.0 100.040.0 99.6+0.0 90.6+0.2 84.1+0.2
Matted 069 99.4+0.1 99.840.0 98.3+0.8 99.5+0.1 88.94+0.4 82.640.1
mean 98.0+0.0 99.1+0.0 97.2+0.1 97.4+0.0 76.9+0.1 72.4+0.2
Woven_001 100.0+0.0 99.8+0.0 100.0+0.0 99.6+0.0 79.1+08 74.0+0.5
Woven_127 97.8+0.4 98.3+0.3 96.6+0.3 94.1+0.7 61.7+15 63.4+1.1
Woven_104 99.0+0.2 99.740.0 98.3+0.6 95.7+0.4 69.8+0.5 66.9+0.4
Stratified_154 100.0+0.0 99.9+0.0 100.0+0.0 99.7+0.0 83.64+0.3 74.1+0.2
Blotchy_099 100.0+0.0 99.940.0 99.84+0.3 99.940.0 92.140.0 85.8+0.0
Woven_068 96.9+0.5 98.4+0.2 94.6+1.2 96.8+0.4 65.4+3.0 61.2+29
2-shot Woven_125 100.0+0.0 99.9+0.0 100.040.0 99.7+0.0 84.4+0.1 76.7+0.2
Marbled_078 100.0+0.0 99.940.0 100.0+0.0 99.6+0.0 87.240.5 80.6+0.4
Perforated_037 96.1+04 99.0+0.1 95.2403 92.9+0.1 66.9+0.7 64.7+0.1
Mesh_114 90.1+0.6 96.2+0.2 88.4+0.4 93.3+05 58.3+0.6 59.0+0.4
Fibrous_183 100.0+0.0 99.940.0 99.8+0.3 99.6+0.0 91.1+04 84.5404
Matted_069 99.7+0.0 99.8+0.0 99.2+0.3 99.6+0.1 89.540.3 82.9+0.1
mean 98.3+0.0 99.2+0.0 97.7+0.1 97.6+0.0 77.4+0.2 72.8+0.3
Woven_001 100.040.0 99.8+0.0 99.840.3 99.7+0.0 80.0+1.5 74.6+1.2
Woven_127 98.4+0.2 98.740.2 96.8+0.5 94.7+12 62.6+2.5 63.8+1.7
Woven_104 99.1+0.0 99.7+0.0 97.7+03 95.9+0.1 70.1+0.2 67.0+0.3
Stratified_154 100.0+0.0 99.9+0.0 100.040.0 99.7+0.0 84.4+1.0 75.7+1.1
Blotchy_099 100.0+0.0 99.940.0 100.0+0.0 99.9+0.0 92.14+0.0 85.7+0.0
Woven_068 96.9+0.5 98.4+0.3 95.5+1.6 97.7+04 68.5+3.2 64.4+2.7
4-shot Woven_125 100.0+0.0 99.9+0.0 100.0+0.0 99.7+0.0 84.9+0.2 77.4+03
Marbled_078 100.0+0.0 99.9+0.0 100.0+0.0 99.6+0.0 87.2+03 80.5+0.3
Perforated_037 96.5+0.2 99.1+0.0 95.3+03 93.5+0.1 68.3+0.3 65.4+0.3
Mesh_114 90.8+1.3 96.54+0.4 89.14+0.2 94.2+40.3 59.4+0.8 60.0+0.5
Fibrous_183 100.0+0.0 99.9+0.0 100.0+0.0 99.7+0.0 91.4+0.2 84.8+0.2
Matted_069 99.9+0.1 99.9+0.0 99.8+0.3 99.7+0.0 89.8+0.2 82.9+0.2
mean 98.5+0.1 99.3+0.0 97.8+0.1 97.8+0.1 78.2+0.2 73.5+0.1
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Table 17. Image-level anomaly classification and pixel-level anomaly segmentation results on MPDD with zero-shot and few-shot Adapt-
CLIP.

Shot Catergoies Anomaly Classification Anomaly Segmentation

I-AUROC I-AUPR I-F1nax P-AUROC P-AUPR P-Flnax

bracket_black 65.8 73.1 77.9 96.4 15.8 26.4

bracket_brown 56.3 72.1 80.3 92.6 2.9 6.7

bracket_white 61.4 54.7 71.4 99.5 4.0 9.1

0-shot connector 71.4 533 61.9 96.1 144 20.5

metal_plate 88.6 94.8 91.8 93.3 60.4 61.5

tubes 97.8 98.9 94.8 97.8 54.6 55.1

mean 73.6 74.5 79.7 95.9 25.3 29.9
bracket_black 76.7+5.1 79.9+6.9 81.5+2.8 97.7+0.3 8.6422 19.5+35
bracket_brown 63.0+5.1 74.3+53 80.340.0 93.0+0.4 3.2402 6.640.3
bracket_white 82.6+5.7 78.74+9.8 82.8+0.8 99.4+0.3 9.7+5.0 17.4+6.7
1-shot connector 83.5+7.6 67.2£13.0 719456 96.7+0.3 19.8+95 24.5+6.9
metal_plate 100.0+0.0 99.840.0 99.84+0.3 98.9+0.4 93.1+2.8 85.7+29
tubes 96.9+1.4 98.6+0.7 95.4+23 98.8+0.1 66.5+2.0 64.842.0
mean 83.8+22 83.1+37 85.3+13 97.4+0.2 33.5425 36.4+24
bracket_black 76.0+4.0 79.4+6.8 80.0+0.8 97.7+0.3 10.8+4.1 21.846.0
bracket_brown 63.0+2.8 73.943.7 80.1+0.3 93.7402 3.7+0.1 7.040.3
bracket_white 79.4+39 76.2+83 78.6+2.6 99.4+0.3 8.7+43 17.9+75
2-shot connector 89.8+3.2 79.4+6.3 79.0+1.9 97.0+0.2 22.6+75 27.8+42
metal_plate 100.0+0.0 99.8+0.0 100.0+0.0 99.2+0.1 95.1+06 87.6+08
tubes 98.240.7 99.1+0.3 96.640.9 98.9+0.3 69.0+3.1 66.84+2.9
mean 84.4+0.7 84.7+2.1 85.7+0.7 97.7+0.0 35.0+0.7 38.2+0.2
bracket_black 80.7+2.6 85.4+33 81.5+0.5 98.1+0.0 15.1+17 27.2+425
bracket_brown 66.1+£29 76.3+38 81.2403 94.4+0.2 4.5+03 8.5405
bracket_white 83.3+4.8 79.6+8.9 82.6+1.0 99.5+0.3 9.2+43 19.147.1
4-shot connector 93.0+0.9 86.4+3.0 85.3+1.0 97.4+0.2 29.7+45 32.8425
metal_plate 100.0+0.0 99.840.0 100.040.0 99.340.0 95.9+04 89.0+0.6
tubes 97.7+08 99.0+0.3 96.0+1.3 98.9+0.1 70.2+1.8 67.7+22
mean 86.8+1.1 87.7+2.4 87.84+0.0 97.9+0.1 37.4+1.1 40.7+1.1

Query GT Mask 0-shot 1-shot 4-shot Query GT Mask 0-shot 1-shot 4-shot

Figure 8. Qualitative comparisons of our AdaptCLIP with different prompt numbers on MPDD.
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Query GT Mask 0-shot 1-shot 4-shot Query GT Mask 0-shot 1-shot 4-shot
Figure 9. Qualitative comparisons of our AdaptCLIP with different prompt numbers on KSDD.
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Table 18. Image-level anomaly classification and pixel-level anomaly segmentation results on Real-IAD with zero-shot and one-shot

AdaptCLIP.
Shot Catergoies Anomaly Classification Anomaly Segmentation
I-AUROC I-AUPR I-Flmax P-AUROC P-AUPR P-Flmax
audiojack 63.5 48.2 534 94.9 11.3 20.9
bottle_cap 66.2 63.1 61.2 98.0 26.6 36.8
button_battery 70.6 78.0 73.4 98.2 50.8 54.2
end_cap 66.1 70.9 74.0 95.2 10.0 18.2
eraser 86.4 85.8 75.9 99.4 37.2 45.6
fire_hood 80.0 70.6 64.8 99.0 37.1 42.8
mint 66.4 65.7 65.0 93.6 26.2 38.6
mounts 79.9 66.7 67.5 97.9 39.0 46.3
pcb 61.9 73.0 75.5 94.4 7.4 13.5
phone_battery 82.1 81.1 70.7 76.1 233 34.5
plastic_nut 68.4 55.5 54.7 96.1 333 434
plastic_plug 69.5 57.6 60.5 96.3 23.0 334
porcelain_doll 71.9 60.7 67.5 99.1 429 449
regulator 73.0 53.4 53.7 92.1 16.2 29.3
0-shot rolled_strip_base 87.1 93.5 85.7 98.6 352 40.8
sim_card_set 89.4 92.9 84.6 99.5 58.8 59.6
switch 67.8 72.8 70.5 84.6 11.8 18.9
tape 93.0 91.4 82.8 97.0 40.5 50.0
terminalblock 76.8 81.8 71.5 96.8 36.5 442
toothbrush 58.4 66.2 69.9 91.1 11.1 17.7
toy 63.3 714 73.5 81.9 9.6 17.8
toy_brick 69.3 61.0 61.6 97.6 22.7 29.8
transistorl 71.3 75.5 75.5 91.8 22.7 323
u_block 772 64.9 62.8 98.6 339 43.1
usb 63.0 57.7 65.0 932 5.1 9.9
usb_adaptor 72.8 62.2 63.6 97.1 15.3 25.3
vepill 80.2 75.6 67.7 98.0 48.4 53.0
wooden_beads 82.6 79.7 73.1 98.4 419 46.2
woodstick 75.6 55.9 56.2 97.5 46.6 522
zipper 86.1 90.5 86.2 95.5 22.3 26.2
mean 742 70.8 68.9 94.9 28.2 35.6
audiojack 72.940.7 62.8+1.7 57.6+12 96.8+0.0 24.7+43 32.0+4.7
bottle_cap 80.2+05 77.8+0.6 71.5+03 98.7+0.0 32.6+02 39.240.0
button_battery 75.1+06 82.4+04 74.1+02 98.3+0.0 58.5+1.0 57.8+0.7
end_cap 75.1+22 81.3+1.6 75.5+0.7 96.7+02 26.0+15 33.7+14
eraser 88.241.1 86.2+1.2 75.2+16 99.5+0.0 50.640.1 50.9+0.1
fire_hood 87.04+03 79.0+04 74.1+03 99.24+0.0 33.3+05 41.6+02
mint 70.8+0.4 70.1+0.1 66.8+0.3 92.7+0.1 26.5+0.4 37.6+03
mounts 85.7+0.4 72.0+0.7 73.8+0.6 98.4+0.0 37.0+04 43.1+06
pcb 73.7+15 83.2409 76.3+04 97.4+0.1 24.3+1.1 32.0+1.3
phone _battery 88.2+0.9 88.0£1.1 78.7+1.5 99.240.0 59.5+12 62.940.7
plastic_nut 79.040.1 72.740.6 64.040.3 97.6+0.0 41.940.2 44.9403
plastic_plug 82.0+0.5 78.2+40.6 68.2+1.0 97.24+03 26.9+0.8 37.7+02
porcelain_doll 92.5+03 88.3+0.7 79.8+0.5 99.5+0.0 49.0+0.5 49.4+03
regulator 73.0+08 58.3+1.0 53.8+1.1 96.0+0.2 10.5+12 19.3+1.3
L-shot rolled_strip_base 90.540.5 95.0+0.4 88.0+£0.4 99.4+0.0 34.1+04 42.941.0
sim_card_set 95.8+02 96.6-£0.1 90.6+0.3 99.7+0.0 58.4+0.6 61.8+0.1
switch 83.440.7 86.940.6 76.4+0.6 93.84+0.0 34.14+09 43.2+09
tape 94.1+03 92.9+03 84.7+0.6 98.9+0.0 45.5+02 51.3+0.1
terminalblock 84.640.7 88.1+0.6 77.2+05 98.8+0.0 47.7+04 52.1+06
toothbrush 75.2+1.0 81.3+09 71.6+02 93.6+0.3 233413 31.7+13
toy 69.442.7 76.242.1 75.4409 84.1+04 12.7+0.8 19.6+1.1
toy_brick 70.6+0.5 64.3+12 61.5+03 97.2+0.1 22.943.0 29.0+2.7
transistorl 73.8+13 77.9+22 75.2+04 95.5+0.0 31.1439 38.0+3.8
u_block 83.84+04 78.5+08 68.2+0.8 99.0+0.0 49.7+13 559410
usb 79.0+05 79.3+06 70.5+0.7 96.6+0.1 23.9406 34.8+05
usb_adaptor 83.4+0.2 78.940.2 70.540.6 98.8+0.0 31.3+03 36.4+04
vepill 85.14+04 83.7+0.8 72.6+1.0 97.9+0.0 53.8+12 60.3+1.2
wooden_beads 88.34+03 88.3+02 77.6+03 98.7+0.0 49.0+04 53.7+03
woodstick 79.7+0.6 65.7+0.9 59.7+05 97.7+0.0 534411 55.0+09
zipper 95.041.0 96.940.6 90.841.3 97.4+02 26.4+0.9 27.0+0.8
mean 81.8+03 80.4+0.2 73.3402 97.1£0.0 36.6+0.1 42.5+0.1
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Table 19. Image-level anomaly classification and pixel-level anomaly segmentation results on Real-IAD with 2-shot and 4-shot AdaptCLIP.

Shot Catergoies Anomaly Classification Anomaly Segmentation
I-AUROC I-AUPR I-F1ax P-AUROC P-AUPR P-Flnax
audiojack 74.7+1.1 66.2+0.9 58.5+1.4 96.9+0.0 29.4+42 36.8+4.3
bottle_cap 80.540.6 77.8+038 71.9+0.7 98.8+0.0 32.7+0.8 39.2+0.6
button_battery 76.341.0 83.6+0.6 74.4405 98.540.0 61.3+04 60.1+0.4
end_cap 77.340.4 83.0+0.1 76.340.3 97.0£0.0 27.3+02 34.5+05
eraser 88.9+1.0 87.1+£0.9 76.24+1.3 99.540.0 49.940.0 50.5+0.0
fire_hood 87.4403 79.5+03 74.5+07 99.3+0.0 33.3+04 41.4+02
mint 71.94+04 71.5+038 67.4+02 93.240.0 27.4+0.7 38.0+0.5
mounts 86.5+0.1 72.5402 74.540.3 98.5+0.0 37.1+04 43.3+03
pcb 76.140.8 85.0+0.6 76.840.3 97.840.0 28.2+0.8 35.5£1.0
phone_battery 89.540.1 89.240.0 79.6+0.1 99.340.0 61.94+04 63.4+0.1
plastic_nut 79.9+0.1 74.0+03 65.3+02 97.8+0.0 42.0+0.1 44.8+02
plastic_plug 82.6+0.3 78.3+04 67.7+0.5 97.4+0.1 28.1+0.1 37.8+02
porcelain_doll 92.940.1 89.0+0.2 80.6+0.3 99.6+0.0 49.24+02 49.2+0.1
regulator 74.14+0.8 60.6+1.9 55.7+05 96.7+0.1 15.7+29 25.244.0
2-shot rolled_strip_base 92.4+1.1 95.8+08 89.7+0.8 99.6+0.0 37.1425 44.8+26
sim_card_set 96.2+0.2 96.9+0.1 90.8+0.3 99.7+0.0 58.3+0.3 61.6+0.0
switch 85.9+0.6 89.2+0.6 78.440.9 93.9+0.0 36.6+0.4 45.9+0.2
tape 94.540.2 93.440.2 85.8+04 99.0+0.0 46.0+0.3 51.2+0.1
terminalblock 86.4+1.2 89.4+0.9 78.640.8 98.940.0 49.2409 53.1+05
toothbrush 76.2+40.6 82.14+04 72.0+05 93.6+0.4 23.5+19 32.3420
toy 68.7+3.7 75.7+428 74.9+1.4 84.2+02 11.4+10 17.8+1.1
toy_brick 71.4+02 65.340.2 61.7+02 97.4+0.1 23.6+03 30.1+09
transistorl 74.6+1.3 78.941.7 75.2402 95.4+02 32.1+2.6 38.7+2.9
u_block 84.3+03 79.24+0.4 68.740.4 99.140.0 49.640.6 55.9+05
usb 81.4403 82.14+0.5 72.7+0.7 96.9+0.0 26.340.9 37.1+07
usb_adaptor 84.0+0.1 79.4+0.1 71.5+04 98.9+0.0 31.9+02 36.5+03
vepill 88.0+0.5 86.2+04 74.9+0.7 98.0+0.0 54.3+07 60.6£0.8
wooden_beads 88.8+0.2 88.7+0.2 78.4403 98.7+0.0 48.7+0.2 53.7+02
woodstick 80.8+0.2 67.340.1 61.4402 97.940.0 54.6+0.3 55.840.2
zipper 96.2+0.4 97.6+0.3 92.5+0.7 97.7+0.0 27.34+02 27.84+0.3
mean 82.940.2 81.5+0.1 74.2+0.1 97.3+0.0 37.8+0.1 43.4+02
audiojack 75.740.6 67.6+1.6 59.4+0.7 97.1+0.1 33.743.1 41.2432
bottle_cap 81.6+0.2 79.1+04 73.3403 98.8+0.0 33.2+03 39.3+0.2
button_battery 76.8+0.3 83.94+04 74.6+0.4 98.6+0.0 62.5+0.8 60.8+0.7
end_cap 79.6+05 84.6+0.4 77.7+03 97.3+0.0 28.240.6 34.9+04
eraser 89.940.1 88.1+0.0 78.1+02 99.6+0.0 49.9+04 50.5+02
fire_hood 87.6+0.2 79.940.3 74.940.3 99.3+0.0 33.4+05 41.4+04
mint 72.940.1 73.1+05 67.7+0.2 93.540.0 28.6+0.5 38.3+0.3
mounts 86.5+0.2 72.1403 75.1+03 98.6+0.0 36.6+0.8 42.3+04
pcb 76.5+1.1 85.4+0.6 76.7+05 98.1+0.0 31.4+09 38.1+1.0
phone_battery 90.3+0.4 89.84+0.3 81.040.6 99.3+0.0 62.9+04 63.4+02
plastic_nut 80.4+0.1 74.940.1 65.240.3 97.940.0 41.7+02 44.9+0.1
plastic_plug 82.7+0.1 78.4+0.1 68.440.4 97.4+0.1 28.1+0.1 37.9403
porcelain_doll 92.9+02 88.7+0.3 80.640.3 99.6+0.0 49.2+03 49.0+03
regulator 75.6+04 63.5+2.1 56.5+0.7 97.3+0.1 18.8+3.7 29.1+4.6
4-shot rolled_strip_base 93.8+1.1 96.4+0.9 91.5+0.1 99.6+0.0 40.1£19 47.3+18
sim_card_set 96.440.2 97.0+0.2 91.340.4 99.7+0.0 58.1+0.7 61.3+03
switch 87.6+0.5 90.7+0.5 80.2+0.5 94.0+0.0 38.5+03 47.6+04
tape 94.9+0.1 93.9+03 86.140.8 99.0+0.0 45.9+03 511402
terminalblock 89.14+02 91.4+0.1 81.2405 99.1+0.0 50.2+0.7 53.7+04
toothbrush 77.640.4 83.2+0.1 72.940.5 93.6+0.1 23.940.9 33.0+1.1
toy 70.442.6 78.2+1.8 74.540.6 84.3+0.1 16.7+1.7 24.1+1.8
toy_brick 72.540.4 66.7+1.2 62.640.4 97.540.0 26.4+23 31.9+1.7
transistorl 78.9+1.1 84.14+0.9 76.5+05 95.5+0.1 37.24+07 43.6+05
u_block 85.04+03 80.8+0.4 71.2+09 99.24+0.0 50.9+05 56.7+02
usb 83.2+0.1 84.0+0.2 75.040.0 97.240.0 29.6+0.2 39.7+0.1
usb_adaptor 84.8+0.2 79.940.2 72.4405 98.940.0 32.0+04 36.4+0.4
vepill 88.5+04 86.9+0.5 76.0+0.7 98.0+0.0 54.8+0.6 61.2+04
wooden_beads 88.940.0 88.7+0.1 78.4+0.1 98.7+0.0 48.4+0.1 53.5+00
woodstick 81.0+03 67.84+0.5 61.5+09 97.9+0.0 55.3+0.2 56.4+0.1
zipper 97.040.0 98.140.0 93.940.0 97.840.0 28.3+0.1 29.440.2
mean 83.9+0.2 82.6+0.0 75.240.1 97.4+0.0 39.1+03 44.6+03
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Table 20. Image-level anomaly classification and pixel-level anomaly segmentation results on BTAD with zero-shot and few-shot Adapt-
CLIP.

Shot Catergoies Anomaly Classification Anomaly Segmentation
I-AUROC I-AUPR I-Fluax P-AUROC P-AUPR P-Flmax
01 96.1 98.6 95.8 933 51.1 54.0
0-shot 02 81.1 96.9 93.2 934 60.5 61.6
~sho 03 95.9 81.0 79.5 94.7 13.8 234
mean 91.0 92.2 89.5 93.8 41.8 46.3
01 97.840.5 99.240.2 96.5+1.0 96.440.1 61.2+03 60.3+0.5
L-shot 02 84.14+0.3 97.5+0.0 93.7+0.0 96.3+0.1 71.84+0.4 65.240.3
) 03 98.240.8 90.7+2.9 84.5+4.0 97.0+0.4 48.643.0 50.642.0
mean 93.440.0 95.840.9 91.6+1.0 96.6+0.2 60.6+1.0 58.7+0.7
01 97.9+40.2 99.1+0.0 96.1+0.5 96.5+0.0 61.440.1 60.3+0.2
2-shot 02 84.0+0.7 97.540.1 93.540.0 96.340.1 71.640.2 65.140.0
) 03 98.5+0.1 91.2+05 85.5+0.9 97.3+0.2 49.84+1.7 51.0+1.1
mean 93.4+02 95.9+0.1 91.7+05 96.7+0.1 61.0+0.6 58.840.4
01 97.240.9 99.0+0.3 96.1+0.5 96.5+0.0 61.740.2 60.440.2
4-shot 02 83.8+0.3 97.440.0 93.6+0.2 96.340.0 71.840.1 65.340.1
03 98.8+0.1 92.6+0.3 86.6+1.5 97.5+0.1 53.4+08 53.240.7
mean 93.3+0.3 96.4+0.1 92.1+0.4 96.8+0.0 62.34+0.3 59.6+0.2

Table 21. Image-level anomaly classification and pixel-level anomaly segmentation results on KSDD with zero-shot and few-shot Adapt-
CLIP.

Shot Catergoies Anomaly Classification Anomaly Segmentation
I-AUROC I-AUPR I-Flmax P-AUROC P-AUPR P-Flmax
0-shot electrical commutators 98.1 95.7 92.3 98.1 58.3 58.1
1-shot electrical commutators 96.9+0.3 91.8+02 89.6+0.5 98.240.1 57.8+12 58.4+05
2-shot electrical commutators 97.2+0.0 92.4+04 89.4+0.9 98.1+0.1 57.5+1.1 58.1+0.6
4-shot electrical commutators 97.0+0.2 91.7+09 88.6+1.7 98.0+0.1 56.4+14 57.240.7

Table 22. Image-level anomaly classification and pixel-level anomaly segmentation results on four medical datasets, Br35SH, Covid,
Kvasir and Endo with zero-shot and few-shot AdaptCLIP.

Shot Datasets Anomaly Classification Anomaly Segmentation
I-AUROC I-AUPR I-F1ax P-AUROC P-AUPR P-Flpax
Br35H 94.8 95.1 87.7 - - -
0-shot Covid 86.5 54.4 554 - - -
Kvasir - - - 82.1 45.3 50.6
Endo - - - 86.5 52.0 54.5
Br35H 93.74+24 92.143.1 87.8+3.2 - - -
L-shot Covid 91.8+255 78.8+4.6 73.1+6.6 - - -
sho Kvasir - - - 833405 4924338 52.1+07
Endo - - - 86.5+1.2 52.444.7 55.242.0
Br35H 94.0+1.7 922425 88.3+2.0 - - -
2-shot Covid 94.940.9 83.6+1.9 78.742.4 - - -
Sho Kvasir - - - 83.5+08 49.0+34 52.6+14
Endo - - - 86.6+1.1 53.14+4.2 55.84+1.7
Br35H 93.74+2.0 91.842.9 88.3+23 - - -
4-shot Covid 95.840.9 85.8+1.2 81.2+1.1 - - -
) Kvasir - - - 83.0+05 47.5+22 52.140.8
Endo - - - 85.840.7 52.243.1 55.6+1.2
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Query GT Mask 0-shot 1-shot 4-shot Query GT Mask 0-shot 1-shot 4-shot

Figure 10. Qualitative comparisons of our AdaptCLIP with different prompt numbers on VisA.
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Query GT Mask 0-shot 1-shot 4-shot Query GT Mask 0-shot 1-shot 4-shot

Figure 11. Qualitative comparisons of our AdaptCLIP with different prompt numbers on MVTec 3D.
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Query GT Mask 0-shot 1-shot 4-shot Query GT Mask 0-shot 1-shot 4-shot

Figure 12. Qualitative comparisons of our AdaptCLIP with different prompt numbers on DTD.

Query GT Mask 0-shot 1-shot 4-shot Query GT Mask 0-shot 1-shot 4-shot

Figure 13. Qualitative comparisons of our AdaptCLIP with different prompt numbers on Kvasir.

Query GT Mask 0-shot 1-shot 4-shot Query GT Mask 0-shot 1-shot 4-shot

Figure 14. Qualitative comparisons of our AdaptCLIP with different prompt numbers on Endo.
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Figure 15. Qualitative comparisons of our AdaptCLIP with different prompt numbers on Real-IAD.
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