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Abstract

Multimodal large language models (MLLMs) rely heavily on instruction tuning to
align vision and language capabilities, yet the computational cost of training on
large-scale datasets remains a major bottleneck. Existing data selection methods
aim to mitigate this by selecting important and diverse subsets, but they often
suffer from two critical drawbacks: high computational overhead from processing
the entire dataset and suboptimal data selection due to separate treatment of im-
portance and diversity. We introduce COIDO, a novel dual-objective framework
that jointly optimizes data importance and diversity to overcome these challenges.
Unlike existing approaches that require costly evaluations across the whole dataset,
CoIDO employs a lightweight plug-in scorer. This scorer is trained on just a small
random subset of data to learn the distribution of the candidate set, drastically re-
ducing computational demands. By leveraging a homoscedastic uncertainty-based
formulation, COIDO effectively balances importance and diversity during training,
enabling the scorer to infer COIDO scores for all samples. This unified scoring
approach allows for direct ranking and selection of the most valuable subsets,
completely avoiding the need for specialized algorithms. In our experiments, we
train the COIDO Scorer using only 20% of randomly sampled data. Once trained,
CoIDO is applied to the entire dataset to select a 20% subset for instruction
tuning. On the widely used LLaVA-1.5-7B model across ten downstream tasks,
this selected subset achieves an impressive 98.2% of the performance of full-data
fine-tuning, on average. Moreover, COIDO outperforms all competitors in terms
of both efficiency (lowest training FLOPs) and aggregated accuracy. Our code is
available at https://github. com/SuDIS-ZJU/CoIDO.

1 Introduction

Instruction tuning has become fundamental for aligning Multimodal Large Language Models
(MLLMs) with human intent, empowering models such as GPT-40 [1]], Gemini [2]], and LLaVA [3] to
handle diverse downstream tasks including visual question answering [4H6]], image-text retrieval [7H9]],
and visual grounding [[10H12]. While large-scale visual instruction datasets (e.g., LLaVA-665K [13])
have enabled impressive performance, they introduce substantial redundancy, high computational
costs, and optimization inefficiencies. For example, fine-tuning a single epoch of LLaVA-1.5-7B
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Figure 1: Previous state-of-the-art methods (e.g., TIVE [18] and ICONS [19]) treat importance
and diversity as decoupled and independent components, using the entire data in the training stage.
Our ColIDO integrates importance and diversity in a coupled and reciprocal optimization, achieving
superior data selection by utilizing only a fraction p%(p < 100) of the full dataset for model training
and without any specialized algorithm in the selection stage.

typically requires over 20 GPU hours on 8 x A100 40GB GPUs [13]]. Such computational demands
pose significant challenges for efficient deployment, particularly for research groups or organizations
with limited access to large-scale hardware resources. Recent works, such as LIMA [14], indicate
that carefully selecting a small subset of high-quality instructions significantly reduces computational
costs while preserving model performance. To mitigate these challenges, data selection methods have
been proposed to identify high-quality instruction data that can enhance the performance of large
language models (LLMs).

Early data selection methods [14-17] have primarily focused on text-only instruction tuning for
LLMs, with limited exploration in the multimodal domain. Unlike text-only data, visual instruction
tuning introduces additional complexity due to its bimodal nature. This complexity brings two
more challenges for the data selection task: (1) processing image-text data pairs demands greater
computational resources, and (2) evaluating the semantic alignment between images and text is
inherently more complex. Consequently, it becomes more challenging to account for both the
importance of individual samples and the diversity of the dataset as a whole. As illustrated in Figure[T]
(a), current approaches tailored for MLLM [18H20] typically involve two stages: the training stage and
the data selection stage. For importance optimization, existing approaches typically require the target
MLLM to process the entire candidate dataset in the training stage, either by evaluating importance
indicators such as gradients [18| [19], or by leveraging intermediate layer features for clustering [21]]
to compute transferability, which can be regarded as importance. For diversity optimization, they also
need to design a complicated selection algorithm in the selection stage, such as a soft sample [[18] or
a similarity penalty [20] to optimize the diversity of the subset.

However, these methods have two major drawbacks: (1) The training and selection stages are decou-
pled processes. Data importance is assessed during training, while diversity is handled separately
through specialized algorithms in the selection stage. This separation fails to jointly optimize the two
objectives and often results in a suboptimal trade-off. Specifically, placing too much emphasis on
importance may reduce overall dataset diversity, while prioritizing diversity could exclude high-value
samples. (2) They require the target MLLM training to process the entire dataset to compute sample
importance. This results in computational costs comparable to full fine-tuning. This fundamentally
contradicts the objective of data selection, which is to reduce training overhead. Moreover, any
addition of new data necessitates reprocessing the entire dataset, severely limiting scalability and
efficiency. Therefore, an ideal data selection framework should satisfy two key criteria:

(i) jointly optimize data importance and diversity, and  (ii) significantly reduce computational
overhead by utilizing only a limited subset of candidate data before the selection.

Building on these considerations, we propose a novel and efficient data selection framework, named
CoIDO (Coupled Importance-Diversity Optimization), explicitly designed to overcome the two



critical issues identified above. As illustrated in Figure [1| (b), COIDO utilizes only p% (e.g., up
to 20%) of randomly sampled data to train a lightweight scorer, instead of fine-tuning the target
MLLM extensively to evaluate the entire dataset. Specifically, in the training stage, we introduce a
plug-in CoIDO Scorer. Unlike previous methods that require evaluating each data sample during
training, COIDO Scorer learns the data distribution from a small subset. Additionally, we move the
optimization of data diversity, which was traditionally handled in the selection stage by a selection
algorithm, to the training stage. We design an importance loss based on the backpropagation and a
diversity loss integrating the spectral clustering. These two objectives are jointly optimized during
the training stage via a homoscedastic uncertainty-based optimization [22]. The scorer assigns each
data sample a COIDO score that takes both importance and diversity into consideration.

In the selection stage, we select the top-scoring samples from each task’s candidate pool in identical
proportions. This ensures balanced coverage and prevents task bias that might arise from global
ranking and selection. Our method only requires examining a small amount of data, which greatly
reduces the training cost. More importantly, since our scorer learns the underlying data distribution
efficiently from a small subset, it transfers seamlessly to new in-domain candidate data without
retraining, substantially enhancing the scalability in data selection. In summary, our contributions are
highlighted in three aspects:

() We introduce a novel dual-objective optimization approach for MLLM visual instruction data,
using coupled optimization for data importance and diversity. (ii) We propose a lightweight scorer
pipeline that learns the candidate data distribution from a small amount of data in the training stage,
enabling efficient and accurate ranking across the entire dataset at significantly reduced training cost.
(iii) In the selection stage, COIDO Scorer can directly select data from the entire dataset without
additional diversity optimization algorithms. Experiments show that fine-tuning the LLaVA-1.5-7b
with only 20% of the samples selected by COIDO achieves 98.2% of the performance of using the
full dataset.

2 Related Work

Data Selection for LLMs. Data selection is critical for optimizing both pre-training and fine-tuning
of LLMs. For pre-training, several methods [23126] curate diverse large-scale datasets to improve
foundation models, but focus on general-purpose diversity rather than instruction-specific quality.
During instruction tuning, where instruction quality is crucial, recent methods like LIMA [14]
and ALPAGASUS [15] employ gradients or an LLM-based evaluator to filter low-quality samples.
Similarly, NUGGETS [27]] utilizes zero-shot and one-shot evaluation, while CAR [28]] incorporates
expert-aligned scoring with clustering to preserve diversity. Though effective, these methods are
designed for text-only datasets and fail to account for more complex semantics in multimodal datasets.

Data filtering methods based on static metrics [29H33]] are not exclusive to textual data. However,
they demonstrate suboptimal performance in the context of visual instruction tuning (see Table [I)).

Data Selection for Visual Instruction Tuning. MLLMs such as Flamingo [34], LLaVA [3]], and
BLIP2 [33] rely on instruction tuning to align visual and textual modalities. Early efforts like
INSTRUCTIONGPT-4 [36] target small-scale datasets (e.g., MiniGPT-4 [37]], 3.4K instructions) and
require evaluation across multiple downstream tasks as labels, limiting scalability. More recent
methods attempt to address this by prioritizing high-value samples from larger instruction datasets,
such as LLaVA-665K [13]. Typical methods include SELF-FILTER [20] that employs a scoring
network, TIVE [18] based on gradient to compute data influence, ICONS [19], which applies
gradient-based selection to identify representative data from tasks, and COINCIDE [21]], which
employs clustering techniques based on concept-skill composition representations.

These methods [20} 11819} 21] typically require full-dataset processing by the target MLLM, incurring
high computational cost. They also decouple the optimization of importance and diversity, often
leading to suboptimal subsets. In contrast, our proposed COIDO reduces overhead by training a
lightweight scorer on a small subset, while jointly optimizing importance and diversity. Moreover,
our approach can transfer seamlessly to new in-domain candidate data without retraining
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Figure 2: Framework overview of COIDO (also see Appendix . Basic features (image, text,
and image-text) are extracted for spectral clustering and scorer training. The plug-in COIDO Scorer,
co-trained with the target MLLM (e.g., LLaVA-1.5-7B), outputs a score w; for each sample. These
scores are used to compute the importance loss £; and diversity loss £p, which are jointly optimized
to capture both data importance and diversity via backpropagation using batches of random samples.

3 Methodology

3.1 Task Description, Framework, and Key Modules

Task Description. Given a large-scale visual instruction dataset D = {z; }évzl, where each sample

zj = (z;,y,) includes a visual instruction x; captured by an image-text pair (see Figurebottom—
right), and a target response ¥;, the task of data selection for visual instruction tuning is to efficiently
select a subset D, C D with |Dy| = vN. The subset should reduce visual instruction tuning
costs while maintaining at least Rel. percentage of the performance achieved using the full dataset.
Typically, v € [0.1,0.4] and Rel. > 95% are desired by real-world applications [20}, [18 19} 21]).

Overall Framework. Our proposed COIDO framework efficiently selects high-quality subsets by
leveraging only a fraction p% (e.g., 20%) of random samples for training. As shown in Figure
we first extract multimodal features and scoring metrics (evaluating text, images, and image-text
alignment) from the raw dataset. These features are used for two purposes: (i) training the lightweight
CoIDO Scorer to assess data importance and diversity in one pass, and (ii) clustering to obtain class
assignments for each data sample, which will be subsequently used in modeling the diversity loss.

This selection framework, centered around the COIDO Scorer, is then trained using the sampled data
and extracted features in a minibatch mode: basic features are fused and fed into the scorer, while the
raw samples are simultaneously used to fine-tune the target MLLM.

During training, the COIDO Scorer assigns a scalar score w;, referred to as the COIDO score, to
each sample. This score reflects both data importance and diversity due to the coupled optimization
of these objectives (see Section[3.2)). In the selection phase, the trained scorer is applied to the full
dataset to infer the COIDO score for each sample. The final subset is obtained by ranking the samples
based on their scores and selecting the top fraction « per downstream task.

Feature Extraction. As depicted in Figure [2| we extract a set of basic features for samples to
train the scorer and perform clustering. These include: 1) Text Features: Captured using an LLM-
based evaluator, which assesses dimensions like spelling and grammar quality. The resulting score,



referred to as the LLM Score, is detailed in Appendix [A.I] 2) Image Features: Measured using
the ImageReward Score [38]], which evaluates image fidelity and semantic clarity. 3) Image-Text
Features: Derived from a pre-trained CLIP encoder [39]], including the low-dimensional multimodal
representations of image-text pairs and the corresponding CLIP Score [29] on image-text alignment.
These features collectively provide a comprehensive assessment of text quality, image quality, and
image-text alignment. The combined features are concatenated as input for clustering and training.

Spectral Clustering. We use spectral clustering [40] to group data samples into a total of M classes.
Unlike K -means, spectral clustering is better suited for capturing complex, non-linear distributions
in multimodal data. The resulting clusters represent fundamental class information, which is used
to compute diversity loss during optimization. Further implementation details and experiments on
feature usage and clustering methods are provided in Appendixes[A.T][C.1] and[C.2]

CoIDO Scorer Training. The scorer is co-trained with the target MLLM to assign COIDO scores
to data samples for the subsequent selection stage, where the features of samples are fetched from
the previous clustering stage. During training, we randomly sample a fraction p% of the dataset.
Each batch serves two purposes: (1) fine-tuning the target MLLM using standard instruction learning,
and (2) training the plug-in COIDO Scorer, which processes corresponding basic features via a
lightweight architecture, like a multilayer perception (MLP). For each batch, the COIDO Scorer
outputs a COIDO score per sample, while the target MLLM computes a cross-entropy loss. These
outputs are jointly optimized to balance data importance and diversity, as detailed in Section[3.2] We
further explore alternative COIDO Scorer architectures and optimization methods in Section[4.2]

Importance Loss. Training loss is a well-established indicator of instruction difficulty, as higher
losses typically correspond to more challenging and valuable samples for improving model general-
ization [41} 42| 20]]. Building on this insight, we introduce learnable COIDO scores, predicted by the
scorer, to re-weight the prediction loss for each data sample.

Since more difficult instructions generally result in higher losses, the corresponding learnable scores
are expected to decrease during training, thereby implicitly capturing sample importance. For each
batch, the COIDO scores are processed using Softmax and subsequently applied to modulate the
cross-entropy (CE) loss of the target MLLM, producing a weighted sum over all samples (see top-right
of Figure[2).

Let s represent the number of samples in a batch, drawn from m clusters (where m < M, as some
clusters may not appear in this batch). For the ¢-th cluster, with n; samples (s = E:’;l n;), the
importance loss L is defined as:
m ng R

Lr= Zi:l Zk:l Wik, - CE(Yik, Jin) ey
where y; and g, denote the ground truth and predicted labels for the k-th sample in the ¢-th cluster,
respectively. We apply a Softmax operation to obtain normalized COIDO scores w;y, which will be
used in coupled optimization of the framework (see Section[3.2)).

A high cross-entropy CE(y;, 3ix) implies the sample is difficult to learn and thus more important.
According to the principle of backpropagation, to minimize the overall loss, the model naturally
adjusts the weight w;; downward for high-difficulty samples. In other words, a lower w;, corresponds
to a more important sample. The formulation £; is therefore designed to capture and optimize the
importance of individual samples in the data selection process.

Diversity Loss. While the importance loss £ optimizes sample weights w;j from the data importance
perspective, it can lead to imbalanced weight distributions across clusters. Certain clusters may
consistently dominate with high or low weights, particularly when they group overly simple or
excessively difficult samples. This imbalance risks selecting subsets dominated by a few clusters,
reducing diversity and potentially impairing the model’s generalization performance.

To address this, we introduce a diversity loss £, which minimizes the variance of average weights
across clusters:

o _ _ 1 ng
Lp = Var({w1, W2, ..., Wn}), w;= Ezkzl Wik, @
where Var(-) denotes variance, and w; is the average weight of samples in the i-th cluster. Only

clusters with samples in the current batch are included in the computation.

This loss encourages balanced weight distribution across clusters, promoting inter-cluster diversity
while preserving intra-cluster variation. For clusters with high average weights (e.g., red and green in



Figure 2] top-left), w; is reduced, while for clusters with low weights (e.g., purple and blue), w; is
increased. This prevents overrepresentation of any single cluster in the final selection, ensuring a
more diverse subset.

Notably, £ only acts on the cluster-level mean values {w; }, and does not penalize the variance
within each cluster, thereby preserving the intra-cluster ranking of sample importance. By jointly
optimizing importance and diversity losses, COIDO scores reflect both the importance and diversity
of samples, ensuring a balanced and representative data selection.

3.2 Coupled Optimization

Importance and diversity somehow inherently conflict in data selection. Prior methods like SELF-
FILTER [20] and TIVE [17] address these objectives in separate optimization stages but often fail
to achieve an optimal balance. Unlike these approaches, our method considers both importance
and diversity in modeling w;;. However, direct summation requires heuristic tuning of scalar
weights between objectives, which can be sensitive to scale differences and lead to unstable or
biased optimization. Moreover, fixed weights cannot adapt to varying task uncertainties or objective
difficulties during training, potentially resulting in suboptimal trade-offs between importance and
diversity. To address this, we propose a dynamic and automatic balancing mechanism during training.

We formulate this problem using a maximum likelihood estimation (MLE) framework under task-
specific uncertainty. Each loss term is treated as the negative log-likelihood of a probabilistic model,
where learnable parameters capture the inherent uncertainty or noise in optimizing each objective.
This concept, termed homoscedastic uncertainty [22]], assumes that uncertainty is constant for a given
objective but varies across objectives, aligned well with our multimodal scenario.

We introduce o; and op as learnable parameters representing the uncertainty for the importance
and diversity objectives, respectively. Let 6 denote the model parameters, y the outputs of the target
MLLM, and w the COIDO scores from the scorer. Using the multi-task likelihood framework, the
total likelihood is modeled as:

logp(y,w|0,01,0p) = Zi_klogp(ym | ik, 0,01) + Zz log p(w; | 0,0p). 3)

Importance Objective. We begin with the importance objective £, formulated within an instance-
weighted likelihood framework. For a sample (x;x, yix ), we directly introduce a temperature pa-
rameter oy and a sample-wise score w; to scale logits, yielding a weighted Boltzmann (Gibbs)
distribution [43]]:

w;
P(Yir | Tix, 0,07, wix) = Softmax ((Tgkfe(l"ik)) ; “)
I

where o controls the sharpness of the distribution, fy(z) is the model output, and w;j, adjusts the
sample’s importance. Taking the negative log-likelihood yields:

wy w;
~logp=——y5 fo+log» exp (z’“fj>, ©)
o7 J o7
where f. is the ground-truth logit of class c. Defining a = “#, the second term in Equationcan be
I
approximated as:
g(a) =log Zj exp(af;) = alog S + log Zj 2 (6)
Wher(i S=> j efi and pj = efi /S. Applying a second-order Taylor expansion of log Zj pj§ around
oa=1
logy pf ~logd_ pj— (= DH(p)+O((a = 1)?). )

Given that ), p; = 1, the zero-order term is eliminated, and O((a — 1)?) refers to second-order
infinitesimals. Besides, H(p) = — >_ ; j log p; is the entropy. Substituting this approximation back

to g(a), we have:
g(a) = alog S — (a— 1)H(p). )

We justify why the first-order error term (o — 1) H (p) can be safely neglected in practice: According
to the definition of entropy, H (p) reaches its maximum value log C' when the output distribution is



uniform over C' classes. However, in practice, model outputs are highly concentrated: the effective
number of candidate tokens 7" is typically much smaller than the vocabulary size C, reducing the
upper bound of H(p) to log T

Empirical studies [44] [43] suggest T typically ranges from 5 to 10 for LLMs, keeping H (p) low.
Combined with the fact that (o — 1) is close to zero, the contribution of the first-order term to the
gradient is negligible. Hence, the final approximation of the negative log-likelihood for a single
sample simplifies to:

Wik N
—log p(yir | ik, 0,01, wir) = gl CE(yik, Dir.)- )
T

For a minibatch of b samples from m clusters (each with n; samples), the final importance loss in
optimizations becomes:

1
=" logp(yix | wik,0,01) = — L1 +logor. (10)
i,k o7
The log oy term arises from the normalization constant of the Softmax-based likelihood under
temperature scaling, as a direct consequence of MLE.

Diversity Objective. Following the multi-task learning framework from Kendall et al. [22], we
interpret the diversity loss probabilistically. We consider a regression perspective by modeling the
cluster-level mean weights w; as Gaussian-distributed random variables with a common mean g and

: 2.
variance op:

- - 2
p(wil0,0p) = N(wi; p, o). (1D
In this formulation, the variance o2, reflects the homoscedastic uncertainty of the diversity objective,

acting as a learned task-dependent weight that downscales £ when the diversity signal is noisier or
less reliable. The negative log-likelihood for this regression objective thus takes the form:

(Wi — p)?

1 2
202 + 3 log(2mop). (12)

—logp(w; | 0,0p) =
By considering all clusters and letting the © be the mean of w;, summing across all clusters, and
omitting constant terms, we arrive at the diversity loss expressed as:

1
=Y, logp(wi | 0,0p) = o—Lp +logop, (13)
D

where Lp = Var(wy, ..., @W,) is exactly our diversity loss derived in Section
Coupled Objective. Combing Equation[T0]and Equation [13} we obtain our final optimization goal:
1

552 Lp+logo; +logop. (14)
o)

Liotal = %»CI +
o7

In Equation[I4] o and o regulate the homoscedastic uncertainty associated with the objectives of
importance and diversity, facilitating the balancing and adaptive optimization of the selection. At
inference time, we discard the uncertainty parameters and directly use the trained COIDO Scorer to
assign selection scores to all candidate samples. To construct the final subset, for each downstream
task, we select the top-vy fraction of samples with the lowest (i.e., most important-and-diverse)
CoIDO scores within that task’s candidate pool. This ensures the selected set maintains balanced
task coverage while preserving the optimization goals of importance and diversity.

4 Experiments

Model & Implementation. We conduct experiments on the LLaVA-665K visual instruction tuning
dataset [13]], using LLaVA-1.5-7B-LoRA [3] as the target MLLM. Our framework trains on p = 20%
of the dataset, sampled randomly, with training configuration aligned with the standard LLaVA. The
CoIDO Scorer is a four-layer MLP. More implementation details are in Appendix [B.2]

Evaluation Tasks. Following the previous work [19} 21], we evaluate COIDO with a wide range
of multimodal benchmarks that test different capabilities of MLLMs. The benchmarks include: 1)



Table 1: Overall performance and efficiency comparison of selection approaches across various
multimodal evaluation benchmarks, with the best measures in bold and the second-best underlined.

Method VQAv2 GQA VizWiz SQA-I TextVQA POPE MME MMBench LLaVA- Rel. (%) MLLM Training Total
en cn Bench Data Cost (%) FLOPs
Full Data 79.1 63.0 47.8 68.4 58.2 86.4 14769 66.1 58.9 67.9 100 ~ 10.2E
Model-free Methods
RANDOM 75.9 59.3 43.6 68.6 55.3 859 14610 603 533 64.5 95.1 ~ AN
CLIP-SCORE [29 734 514 43.0 65.0 54.7 853 13316 552 520 66.2 91.2 ~ ~
EL2N [32 76.2 58.7 43.7 65.5 53.0 84.3 1439.5 532 474 64.9 92.0 ~ ~
PERPLEXITY [33 75.8 57.0 47.8 65.1 52.8 82.6 13414 520 458 68.3 91.6 ~ ~
SEMDEDUP [30 74.2 54.5 46.9 65.8 55.5 84.7 13769 522 485 70.0 92.6 ~ ~
D2-PRUNING (31 73.0 58.4 419 69.3 51.8 857 13912 657 57.6 63.9 94.8 ~ ~
SELF-SUP [30 74.9 59.5 46.0 67.8 49.3 83.5 13359 614 538 63.3 934 N N
Model-involved Methods
SELF-FILTER [20 73.7 58.3 53.2 61.4 529 83.8 1306.2 488 453 64.9 90.9 100 31.2E
TIVE* ¢ [I7 76.0 58.4 44.6 69.8 533 857 14484 66.9 58.7 63.4 96.7 100+8 11.7E
ICONS* ¢ [19 71.0 60.4 45.5 70.4 54.5 86.1 14477 64.6 540 66.9 97.1 100+5+2.2 12.6E
COINCIDE [21] 765 598  46.8 69.2 55.6 86.1 14956 63.1 545 673 97.4 100 49E
CoIDO (Ours) 77.2 60.4 47.1 69.4 55.6 854 14502 638 56.7 70.1 98.2 20 4.2E

* These methods need additional data to train the target MLLM for warm-up or as a reference set. ¢ reproduced by us, as the relevant LORA
results are not included in the paper. < Reproduced with the optimal subset LLaVA-ICONS-133k released by ICONS within our unified
evaluation framework (see an examination of the evaluation framework in Appendix[B-3), corresponding to the original reports Rel. = 98.6%.

visual question answering: VQAV2 [46], GQA [47], VizWiz [48]]; 2) knowledge-grounded QA: Sci-
enceQA [49]; 3) Optical Character Recognition (OCR): TextVQA [50]; 4) hallucination: POPE [51]];
5) multiple-choice: MME [52]], MMBench [53[]; 6) free-form generation: LLaVA-Bench (In-the-
Wild) [3]. More information about these benchmarks is provided in Appendix Since each
evaluation benchmark has a different scale, we compute average relative performance, denoted as
Rel., across the ten benchmarks to assess the level of generalization. Relative performance on each
benchmark is defined as: (subset model performance / full-data model performance) x 100%.

4.1 Opverall Performance and Efficiency Comparison

Metrics. We introduce a key efficiency metric: MLLM Training Data Cost, which quantifies the
proportion of data used to train the selection model relative to model fine-tuning. A 100% MLLM
Training Data Cost implies no reduction in resource usage compared to full-data training. In addition,
we report fotal FLOPs, derived as the product of parameter volume and training sample number.

Baselines. Table[T|compares the proposed COIDO to two baseline categories: 1) model-free methods
include random sampling and CLIP-Score [29], which rely on simple criteria without resorting to the
target MLLM. While computationally efficient (zero MLLM Training Data Cost and low FLOPs),
their limited understanding of the data compromises effectiveness and transferability. 2) model-
involved methods (20, 121,17, 119] require fine-tuning the target MLLM during data selection, resulting
in significant computational costs (usually 100% MLLM Training Data Cost). Gradient-based
methods like TIVE and ICONS also require additional warm-up data (8% and 5%, respectively),
with ICONS further relying on benchmark validation sets (2.2% of the total data) for gradient
computations. While this provides high-quality, task-specific data, it is often impractical in real-world
scenarios. COINCIDE uses a smaller MLLM TinyLLaVA-2B as the reference model, but the entire
data traversal still incurs a high training cost compared to ours. See more details of these baselines in

Appendix

Performance & Efficiency Results. As shown in Table[[] COIDO achieves a Rel. of 98.2% while
using only p = 20 (%) of the data for framework training. Compared to model-free methods,
CoIDO provides significantly higher performance and robustness. Against model-involved methods,
it matches the SOTA performance of ICONS but reduces MLLM Training Data Cost to just 20%.
Unlike ICONS, CoIDO does not require additional validation sets, simplifying the process while
ensuring optimal performance. Furthermore, COIDO achieves the lowest total computational cost,
requiring only 4.2E (ExaFLOPs), outperforming all other methods in efficiency.

4.2 Ablation Study and Design Choices

We perform ablation studies to confirm the design choice of COIDO, focusing on coupled optimization
strategies and the scorer architectures. See more ablation studies in Appendix



Optimization Methods. COIDO employs a coupled optimization strategy (Section [3.2)), which
jointly optimizes data importance and diversity via integrated learning objectives. To assess its
effectiveness, we test several optimization strategies, summarized in Table@} As a baseline, we first
adopt a conventional approach that optimizes the importance loss £ alone during training, omitting
the diversity loss £ . Diversity is added only at the selection stage via a standalone procedure. This
approach achieves the lowest Rel.=89%. We also experiment with alternative formulations, including
simple summation of the two loss terms and weighted combinations using learnable coefficients (e.g.,
Aand 1 — )\). Among all configurations, our homoscedastic uncertainty optimization proves most
effective (the best in most cases, while performing rather close to the best measure).

Table 2: Ablations of optimization methods (the best in bold and the second-best underlined).

Loss Function VQAv2 GQA Vizwiz SQA-I TextVQA POPE MME MMBench(en) MMBench(cn) LLAVA-B Rel. (%)
Ly 719 489 44.6 59.7 52.5 86.2 13935 51.1 449 649 89.0
Li+Lp 74.5 55.8 46.4 67.3 52.6 83.5 1339.7 57.0 50.9 62.3 92.0
M+ (1=XNLp 76.1 594 46.8 68.7 54.4 85.2  1465.6 60.5 54.0 64.6 95.9
Ours 712 60.4 47.1 69.4 55.6 854 14502 63.8 56.7 70.1 98.2

Scorer Architecture. To explore alternatives to the MLP-based COIDO Scorer, we evaluate two
additional designs: (1) a Transformer-based Scorer with two standard Transformer blocks, and
(2) an attention-only Scorer using self-attention and cross-attention mechanisms applied directly
to extracted features. The Transformer-based variant combines stacked attention and feedforward
layers for enhanced capacity, while the attention-only design explicitly captures intra- and inter-
sample relationships. Figure [3| compares their performance (Rel.) and training-time FLOPs. The
strong performance of the MLP-based scorer can be attributed to the expressiveness of the extracted
multimodal features (e.g., CLIP Score and ImageReward), which already encode rich semantic
alignment and quality cues, thereby reducing the need for additional modeling complexity.

100
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Figure 3: Ablations of different
CoIDO Scorer architectures.
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Figure 4: Comparison of differ-
ent training data ratios p%.

20%
Selection Ratio (%)

Figure 5: Performance vs. selec-
tion ratios 7.

4.3 Parameter Sensitivity Study

We analyze 1) the training data ratio (p%) and 2) the selection ratio (v defined in the task description)
that denotes the proportion of data selected for training. See more parameter analyses in Appendix [C]

Training Data Ratio. COIDO enables effective data selection using a small fraction of the training
data. To identify an optimal p%, we gradually increase p% starting from 5%. As shown in Figure 4]
performance is modest when p < 10 (%), but improves clearly beyond this threshold. Notably, Rel.
stabilizes after p > 20 (%), indicating that 20% data is sufficient to capture the dataset distribution.
Based on these findings, we set p = 20 (%) as the default for all experiments.

Selection Ratio. We evaluate COIDO and baselines across selection ratios () ranging from 5%
to 40%. Figure [5] shows that COIDO consistently outperforms the competitors across this range.
However, as vy approaches 40%, the performance gap narrows since most high-quality samples in
LLaVA-665K would be identified by all methods. When the selection ratio exceeds 50%, the impact
of randomness increases, and even a random selection strategy may yield strong results due to the
inclusion of a large portion of the dataset (this shows a necessity of reducing visual instruction tuning
data in practice). Hence, we focus on selection ratios between 5% and 40%, where differences
in selection methods are most distinct and provide meaningful insights into method effectiveness.
Notably, COIDO consistently achieves the highest Rel. across all selection ratios.



4.4 Generalizability and Transferability

In order to further explore the potential of COIDO, we conduct experiments about generalizability
and transferability. We define generalizability as the ability of the proposed data selection frame-
work to be directly applied to other models or datasets. Transferability, on the other hand, measures
whether a CoIDO scorer trained on one domain can be reused to select informative data in another,
out-of-domain corpus. To evaluate these two aspects, we conduct experiments on the Vision-Flan
dataset, a large-scale human-annotated visual instruction-tuning benchmark containing over 200
diverse vision—language tasks. Additional results on other models and datasets (e.g., LLaVA-13B
and LLaVA-150K) are presented in Appendix [C.4]and [C.3] Both results on generalizability and
transferability are summarized in Table[3]

Table 3: Performance of CoIDO on the Vision-Flan dataset (20% data selection). ¥ CoIDO scorer
trained on LLaVA-665K and applied to Vision-Flan (out-of-domain transfer).
Model / Setting VQAv2 GQA VizWiz SQA POPE TextVQA MME MMBench(en) MMBench(cn) LLaVA-B Rel. (%)

Full Fine-tune 74.5 47.1 52.8 61.8 464 85.7 1480.6 40.2 46.2 38.2 100.0
Random 74.6 44.3 50.0 59.8 409 81.3 1407.1 49.2 48.3 33.6 97.8
CoIDO 75.7 45.1 53.5 623 453 82.8 1452.9 52.0 46.8 37.6 102.1
ColDO* 75.7 46.8 53.3 66.2  42.1 85.5 1486.1 51.4 473 40.8 103.7

Generalizability. As shown in the first three rows of Table 3] CoIDO consistently surpasses random
selection and even slightly outperforms full fine-tuning under the same 20% budget, achieving a
relative score of 102.1%. The gains are especially notable on reasoning-intensive and perception-
heavy benchmarks such as VizWiz and POPE, demonstrating that CoIDO is capable of identifying
semantically rich and instruction-relevant samples even within large human-curated datasets. These
results confirm ColDO’s strong generalizability which can be applied across different datasets.

Transferability. To further assess knowledge transfer, we reuse the ColDO scorer trained on
LLaVA-665K directly for data selection on Vision-Flan, without retraining or domain adaptation.
As indicated by the last row of Table [3] the scorer trained on LLaVA-665K achieved even better
results on Vision-Flan than the scorer trained directly on Vision-Flan itself. We believe this
is because LLaVA-665K is a significantly larger and more diverse dataset, allowing the scorer to
learn a more generalizable notion of sample difficulty and importance. This enables it to transfer
effectively across domains, even outperforming in-distribution scorers trained on smaller datasets.
This indicates that COIDO can seamlessly be transferred to new domain datasets with similar
distributions, demonstrating its transferability.

5 Conclusion and Future work

In this paper, we present an efficient data selection framework for visual instruction tuning in
multimodal large language models (MLLMs). By coupling the optimization of data importance
and diversity, and employing a lightweight scorer to learn data distribution from a small subset, our
CoIDO framework achieves state-of-the-art performance while significantly reducing the amount
of required training data and computational cost. This scalable and practical approach provides a
valuable contribution to improving efficiency in MLLM fine-tuning.

Future work includes exploring co-training with smaller, proxy MLLMs, such as TinyLLaVA, to
further reduce training costs and validating scalability on larger MLLMs like LLaVA-13B. Additional
directions involve dynamic data selection for evolving datasets and training progress and extending
the framework to other multimodal scenarios, e.g., audio LLMs and video LLMs.
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A More Technical Details

A.1 Details in Feature Extraction and Spectral Clustering

Feature Extraction. Before our training process, we derive four categories of basic features for each
training data sample. These features are intended to encapsulate the quality of images, text, and the
alignment of image-text. A comprehensive overview of these basic features is provided in Table
while the exact prompt employed in our LLM-based evaluator is depicted in Figure[6]

Table 4: Explanations of our basic features extracted before the training process.

Indicator Explanation

Image-Reward Score |38]  This score from the ImageReward model [38]], which assesses the quality
of images generated from text prompts by aligning them with human
preferences, focusing on aspects such as text-image alignment, visual
fidelity, and overall aesthetic appeal.

LLM Score The LLM Score represents a robust measure employed by a language
model to assess the response’s quality, specifically in terms of grammar,
spelling, and fluency. This score indicates how well the generated caption
aligns with the model’s language capabilities. In our approach, we utilize
DeepSeek-V3 [54] for text evaluation, with the prompts illustrated in
Figure @

CLIP Features Vision-language features in low-dimensional space obtained by encoding
images with ViT from CLIP [39] and text with Llama2 [53]}, followed
by conducting unsupervised dimensionality reduction.

CLIP Score [29] This score is the Cosine similarity between the embedding of an image
and that of its corresponding text. This metric serves as an indicator
of the semantic alignment between visual and textual modalities. It
quantifies how well the caption represents the visual content and is used
to assess the coherence between image-text pairs.

& deepseek

We would like to request your feedback on the performance of Al assistant in response to the user's questions

System Prompt:

in the conversation displayed following.

Conversation: [text]

User Prompt:

Please rate according to the content of the responses to the questions. The assistant should receive a score on a
scale of 0 to 10, where a higher score indicates higher level of the content. Please first output a single line
containing the value indicating the scores. In the subsequent line, please provide a comprehensive explanation

of your evaluation, avoiding any potential bias.

Figure 6: The prompt is analogous to that used in ALPAGASUS [13]. We employ DeepSeek-V3 [54]
to evaluate the quality of the text.

Spectral Clustering. We employ spectral clustering to group training data samples based on their
basic features. The process begins by constructing a similarity matrix from the input basic features,
which are illustrated in Table[/| We utilize Cosine similarity to quantify the pairwise relationships
between data samples. To focus on the most relevant connections and manage computational
complexity, a K{-Nearest Neighbors (A NN) graph is then built upon this similarity matrix, effectively
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creating a sparse representation of the data’s affinity structure. The spectral clustering algorithm
is subsequently applied to this graph, partitioning the data into a predefined number of clusters by
analyzing the spectrum (eigenvalues) of the graph Laplacian. This method allows for the identification
of clusters based on connectivity rather than solely relying on compactness.

Compared to K -means, spectral clustering offers distinct advantages for analyzing complex image-
text datasets. Firstly, spectral clustering is capable of identifying clusters with non-convex shapes,
which K-means often struggles with due to its assumption of spherical cluster geometry. The rich
semantic relationships in image-text data often manifest as intricate structures in the feature space that
are better captured by spectral methods. Secondly, by operating on a graph representation, spectral
clustering can reveal underlying manifold structures within the data. This is particularly beneficial
for image-text embeddings, where meaningful relationships might not be best represented by simple
Euclidean distances to cluster centroids, but rather by the connectivity patterns between samples.
This allows for a more nuanced understanding of how different image-text pairs relate to one another,
leading to potentially more coherent and semantically meaningful groupings.

A.2  Pseudocode of the Framework Training

We provide detailed pseudocode for our COIDO framework in Algorithm 1}

Algorithm 1 CoIDO: Training the COIDO Scorer

Require: Instruction dataset D, MLLM f, Scorer, sampling ratio p%, clusters M, batch size s
1: Randomly sample D,. C D, |D,| < p%|D|
2: Extract basic features x; for each x; in D,
3: Cluster D,. into M groups using spectral clustering
4: for each training step do
5 Sample minibatch B < {z;}_; ~ D,
6: for each z; in B do
7.
8

Compute prediction §; < f(x;)
Compute loss £; < CE(y;, ;)

9: Compute weight w; < Scorer(x;)

10: end for

11: Compute L7 « >°7_; w;L;

12: for cluster C; in this minibatch ,i =1,2,..., m do

13: Compute average weight w; <— Mean(w;, z; € C;)

14: end for

15: Compute diversity loss L < Var(ws, . .., W)

16: Compute total loss Lo < U%/SI + 2;% Lp+logo; +logop
17: Update f, Scorer, and oy, op using Lo

18: end for

B More Experimental Setting Details

B.1 Baseline Description

Model-free Methods. Model-free methods select training data without relying on the training or
inference of large multimodal language models (MLLMs). Instead, they utilize static heuristics or
precomputed metrics to evaluate sample quality or diversity. Due to the absence of target MLLM, the
results of such methods are usually not satisfactory. These baselines including

* RANDOM SAMPLING: This baseline method involves randomly selecting samples from the
dataset without any specific criteria. It serves as a reference point to assess the effectiveness
of more sophisticated selection strategies.

* CLIP-SCORE [29]: Utilizes the Cosine similarity between image and text embeddings
generated by the CLIP model to measure the semantic alignment of image-text pairs. Higher
scores indicate better alignment.
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* EL2N [32]: Calculates the L2 norm of the loss for each sample during the initial epochs of
training. Samples with higher EL2N scores are considered more informative, as they are
harder to learn early on and are thus prioritized for training.

* PERPLEXITY [33]: Employs a language model to compute the perplexity of textual responses.
Lower perplexity scores suggest that the text is more predictable and, by extension, of higher
quality.

* SEMDEDUP [30]: Implements semantic deduplication by identifying and removing semanti-
cally similar or duplicate samples from the dataset, thereby enhancing diversity and reducing
redundancy.

Model-involved Methods. Model-involved methods incorporate the training of MLLMs into the data
selection process. These approaches often involve fine-tuning the MLLM, estimating gradient-based
influence, or leveraging internal representations of MLLMs to evaluate the utility of each sample.
Although these methods are typically more computationally expensive, they tend to outperform
model-free methods by capturing more informative signals about task relevance, data quality, and
alignment with downstream objectives. These baselines including

* SELF-FILTER [20]: Trains a scoring network alongside the MLLM to evaluate the quality
of instruction samples. By filtering out low-quality data based on model feedback, it aims to
enhance the overall training efficiency and performance.

* TIVE [17]]: Estimates the value of each task-instance pair by analyzing gradient-based
influence scores. This method selects samples that are expected to have the most significant
impact on model performance, thereby reducing redundancy in the training data.

e ICONS [19] (Influence Consensus): Aggregates influence scores across multiple tasks to
identify samples that consistently contribute positively to performance. By focusing on these
consensus samples, I[CONS facilitates efficient multi-task learning with a compact dataset.

* COINCIDE [21]: Combines multimodal features and task relevance to select representative
samples that capture the essential characteristics of vision-language data. This approach
aims to improve the model’s generalization and multi-task learning capabilities.

B.2 Training Configuration of Our Method

We implement our method based on the LLaVA-1.5-7B architecture with LoRA tuning [56]. All
experiments are conducted using eight AS000 GPUs with 24GB of memory. The fine-tuning process
utilizes LoRA [56] across 2 epochs, with each GPU processing a batch size of 8 and a learning rate
set at 2e-5. The Adam optimizer is applied, featuring no weight decay, alongside a Cosine learning
rate schedule and a warmup ratio of 3%.

Following LLaVA [3]], we use CLIP-ViT-L-336px for visual embedding and Vicuna-7B for text
encoding. Spectral clustering is performed on normalized features with the number of clusters set to
M = 20. Two learnable uncertainty parameters, o; and o p, are initialized to 0. The hidden layer size
of our MLP is specified as 1536 for handling CLIP features and 3 for combining LLM Score, CLIP
Score, and Image-Reward Score. Consistent with the original paper, we applied the same fine-tuning
settings to the LLaVA-1.5-7B model for both LoRA and full fine-tuning.

B.3 Evaluation Setup

Benchmarks. Our MLLM undergoes evaluation through ten diverse benchmarks designed to assess
a range of capabilities, such as visual question answering, reasoning, robustness, and following
instructions. A detailed overview of these benchmarks is provided in Table[3}

Evaluation Framework. In all experiments, we evaluate all benchmarks in strict accordance with the
official guidelines and procedures of LLaVA-1.5-7B [13]. Table ] presents the relative correctness
of our unified evaluation framework. LLaVA-Bench was initially evaluated using gpt-3.5-turbo-
0613. However, this model has since been deprecated by OpenAl. Based on discussions within the
communityﬂ and comprehensive consideration, we switched to using gpt-40-mini for evaluation.

’The related discussion on https://github.com/EvolvingLMMs-Lab/lmms-eval/issues/294.
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Table 5: Descriptions of benchmarks used to evaluate the MLLM performance.

Benchmark Explanation

VQAV2 [46] A widely-used benchmark for visual question answering, consisting of
natural images paired with open-ended questions that require understand-
ing visual content to produce correct answers.

GQA [47] This benchmark evaluates models on questions that require reasoning
about real-world images, emphasizing logical inference and relational
reasoning capabilities.

VizWiz 48] A visual question answering benchmark specifically designed for visually
impaired users, containing challenging real-world images with questions
often needing practical reasoning about ambiguous or incomplete visual
content.

SQA-I [49] Situated Question Answering on Images, a benchmark designed to as-
sess how well models can handle questions requiring situational and
contextual visual understanding.

TextVQA [50] A benchmark for evaluating model capability in answering questions
requiring reading and reasoning over textual information presented in
images, such as signs or printed text.

POPE [51]] A visual understanding benchmark focused on identifying the presence
or absence of specific objects or entities in images, emphasizing accuracy
and robustness in object recognition.

MME [52] Multimodal Evaluation, an aggregate benchmark that assesses compre-
hensive multimodal understanding by combining various tasks including
reasoning, captioning, and classification across multiple modalities.

MMBench (en/cn) [S3] A multimodal benchmark assessing the performance of models in an-
swering complex multimodal questions in both English (en) and Chinese
(cn), highlighting multilingual and multimodal understanding capabili-
ties.

LLaVA-Bench [3] A tailored benchmark for evaluating multimodal large language models
(MLLMs), focusing on complex reasoning and understanding capabili-
ties from multimodal data, particularly image-text pairs.

This change in evaluation framework is the primary reason for the notable difference observed in the
metrics presented in Table [6]

To ensure the validity of our evaluation pipeline, we first verified that our unified evaluation framework
accurately reproduces the official results of LLaVA-1.5-7B on all benchmarks. As shown in Table [6]
the reproduced scores are consistently aligned with the original reports, despite the shift from
gpt-3.5-turbo-0613 to gpt-40-mini as the evaluation backend.

However, when reproducing the ICONS baseline, we observed a notable discrepancy: our evaluation
yields a relative performance of 97.1%, while the original ICONS paper reports 98.6%. We emphasize
that this difference does not stem from issues in our framework. Our result is obtained using the
officially released subset (LLaVA-ICONS-133k) provided by ICONS and evaluated using the same
scoring protocol applied to all methods. Given the consistency of our framework across all other
benchmarks and baselines, we attribute this minor drop to changes in evaluation prompts, model
versions, or post-processing details on ICONS’s side that were not fully disclosed. Therefore, this
discrepancy should not be interpreted as a flaw in our implementation, but rather as a natural outcome
of aligning all methods within a consistent and transparent evaluation setup.
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Table 6: Validation of the evaluation procedure.
Evaluation Setting VQAv2 GQA Vizwiz SQA-I TextVQA POPE MME MMBench(en) MMBench(cn) LLaVA-B Rel. (%)

Original Report 79.1 63.0 47.8 68.4 58.2 86.4  1476.9 66.1 58.9 67.9 100.0
Our Reproduction 79.1 62.9 48.4 68.6 58.2 86.4  1478.1 66.6 58.9 69.4 100.4
Difference (A) 0.0 -0.1 +0.6 +0.2 0.0 0.0 +1.2 +0.5 0.0 +1.5 +0.4

Table 7: Feature components used in COIDO Scorer training.
Feature Composition VQAv2 GQA Vizwiz SQA-I TextVQA POPE MME MMBench(en) MMBench(cn) LLAVA-B Rel. (%)

Only CLIP Features 76.5 59.0 511 68.6 55.1 829 1423.8 60.1 53.1 66.1 96.3
Only Scores 77.0 59.6 47.4 66.4 54.7 814 14569 61.9 55.5 68.4 96.4
All (Ours) 77.2 60.4 47.1 69.4 55.6 85.4 1450.2 63.8 56.7 70.1 98.2

Table 8: The number of clusters M (M is set to 20 by default in our main experiments).
#Clusters VQAv2 GQA Vizwiz SQA-I TextVQA POPE MME MMBench(en) MMBench(cn) LLAVA-B Rel. (%)

5 74.3 56.7 47.1 64.7 52.1 859 13984 53.4 48.8 66.2 922
10 74.0 58.3 49.8 68.1 51.7 87.6 14158 59.3 49.7 62.6 94.2
20 712 60.4 47.1 69.4 55.6 854  1450.2 63.8 56.7 70.1 98.2
40 76.1 59.2 51.2 68.1 54.1 85.6 15124 60.7 54.9 66.3 97.4

Table 9: Application on full fine-tuning.
Method VQAv2 GQA Vizwiz SQA-I TextVQA POPE MME MMBench(en) MMBench(cn) LLAVA-B Rel. (%)

Full Data 78.5 62.0 50.0 66.8 58.2 85.9 1510.7 64.3 58.3 65.4 100.0
RANDOM 74.5 56.5 485 66.5 54.9 83.1 1364.1 58.6 52.1 67.3 94.7
Ours 759 57.8 474 67.8 54.6 81.1 1402.9 60.6 55.0 68.8 96.1

C More Experimental Results

C.1 Feature Components

To ascertain the features employed in the training of COIDO, an ablation study is performed focusing
on the components of features utilized during this process. For this analysis, we employ only the
CLIP Features or the three scores (LLM Score, CLIP Score, and Image-Reward Score). The findings
are presented in Table[7] These results indicate that the omission of any feature results in a decline in
overall performance.

C.2 Number of Clusters

The cluster number M is a crucial parameter in our framework, as the computation of diversity loss
L p for each batch depends on the number of clusters included in that batch (m, m < M). When M
substantially exceeds the batch size, it is highly probable that the samples in each batch originate
from a limited subset of the clusters. Consequently, each time the diversity loss is evaluated, certain
clusters may be excluded. Conversely, if M is significantly smaller than the batch size, it is highly
probable that samples from all clusters can be represented in each batch. However, choosing a too
small for M may, in turn, compromise the optimization of diversity. To choose the appropriate M,
we experiment on different M settings from 5 to 40, the results are reported in Table[S]

C.3 Application on Full Fine-tuning

Table [I] presents a comparative analysis of LLaVA-1.5-7B-LoRA’s performance. To assess the
efficacy of supervised fine-tuning across the entire LLaVA-1.5-7B, we evaluated our selected subset,
as detailed in Table @ The findings indicate that, even with the direct fine-tuning of LLaVA, CoIDO
remains effective, thereby confirming its generalizability.

C.4 Application on Larger Model

Table [10| reports the evaluation results on the larger-scale LLaVA-13B-LoRA model. To further
examine the scalability and generalizability of COIDO, we apply the same data selection pipeline
used for the 7B model to the 13B counterpart without any modification. The results demonstrate
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that CoIDO consistently outperforms existing baselines and maintains comparable performance to
full-data fine-tuning under the same 20% budget. This confirms that COIDO generalizes effectively
to larger model capacities, validating its robustness and adaptability across different parameter scales.

Table 10: Evaluation results on the LLaVA-13B-LoRA model under a 20% data selection ratio.

Method VQAv2 GQA VizWiz SQA-I TextVQA POPE MME MMBench(en) MMBench(cn) LLaVA-B Rel. (%)
Full Finetune 80.0 63.3 58.9 71.2 60.2 86.7 1541.7 68.5 61.5 69.5 100.0
Random 76.7 60.5 48.0 68.8 57.7 84.8 1484.9 62.8 55.2 68.6 94.0
ICONS 719 60.5 47.7 74.0 57.3 874 15039 65.5 59.2 65.3 95.7
COINCIDE 71.8 60.4 51.6 70.0 58.6 87.1  1516.8 64.0 57.7 67.4 959
CoIDO (Ours) 715 61.5 511 74.2 58.9 858  1586.4 64.7 57.5 69.7 97.2

C.5 Application on Smaller Dataset

Table [ T] presents the evaluation results on the smaller-scale LLaVA-150K dataset. To further assess
the generalizability of COIDO under limited data regimes, we directly apply our selection strategy
without re-tuning any hyperparameters. As shown in Table[l 1} COIDO consistently achieves superior
or comparable performance to full-data fine-tuning while using only 20% of the data, demonstrating
its robustness and adaptability in low-resource scenarios.

Notably, the accuracies of GQA and TextVQA are consistently below 1% across all methods (close to
random guessing), and thus omitted from the table. This behavior is expected because LLaVA-150K
contains very few or no samples related to compositional reasoning (GQA) or OCR-centric tasks
(TextVQA), rendering these benchmarks unreliable in this setting. Interestingly, for MMBench and
MMBench(cn), both random selection and CoIDO obtain higher scores than full-data fine-tuning,
which we attribute to the presence of noisy or low-quality samples in the complete dataset—selective
fine-tuning helps mitigate overfitting and improves generalization to evaluation benchmarks.

Table 11: Performance of ColDO on the LLaVA-150K dataset.

Model VQAv2 VizWiz SQA POPE MME MMBench(en) MMBench(cn) LLaVA-B Rel.(%)
Full Fine-tune 55.2 45.5 576 579 12345 224 27.1 65.9 100.0
Random 50.0 44.8 534 542 11847 30.7 30.1 62.4 101.7
CoIDO (Ours) 49.5 47.1 582  56.1 1214.8 29.8 323 63.8 104.8

C.6 Detailed Results for Main Paper Experiments

This section presents the complete per-benchmark evaluation results, as detailed in Tables [12] [T3]
and[T4] corresponding to Figures and[5]in the main paper, respectively.

C.7 Visual Analyses

To visually analyze the effectiveness of the scores outputed by the COIDO Scorer, we conduct a case
study with results presented in Figure[7]and Figure

D Limitations

While CoIDO demonstrates strong performance in data-efficient instruction tuning, several limita-
tions remain. First, our approach relies on four handcrafted data features to represent each sample.
Although the computation for these features is lightweight, this dependency may limit extensibility or
introduce engineering overhead. Future work will explore whether an effective scorer can be learned
from fewer or even latent representations to further streamline the pipeline.

Second, our experiments are currently limited to LLaVA-1.5-7B. The effectiveness of COIDO on
larger models, such as LLaVA-13B or other recent MLLMs, is yet to be verified. Extending the
evaluation to larger-scale models is crucial for assessing the scalability and generalizability of our
approach. This will require significantly greater computational resources, but it is foreseeable that
this task can be accomplished in a near future.

Third, although CoIDO achieves high selection quality with significantly reduced computational cost,
COINCIDE [21] also offers low FLOPs by leveraging a smaller reference model (TinyLLaVA-2B).
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Table 12: Detailed results for different COIDO Scorer architectures (MLP by default in our design).
CoIDO Structure VQAv2 GQA Vizwiz SQA-I TextVQA POPE MME MMBench(en) MMBench(cn) LLAVA-B Rel. (%)

Attention 76.2 59.8 47.8 66.7 54.4 858  1468.0 60.5 53.9 65.8 96.1
Transformer 71.0 59.7 48.7 68.1 539 83.5  1439.7 63.4 55.9 64.2 96.6
MLP 77.2 60.4 47.1 69.4 55.6 854  1450.2 63.8 56.7 70.1 98.2

Table 13: Detailed results for different training data ratios (20% by default in our design).
Ratio VQAv2 GQA Vizwiz SQA-I TextVQA POPE MME MMBench(en) MMBench(cn) LLAVA-B Rel. (%)

5% 76.1 58.4 41.8 67.4 54.6 86.1 1449.1 61.9 53.9 65.4 94.8
10% 77.0 59.4 46.4 66.8 54.2 83.3 1499.4 61.9 55.7 66.9 96.4
15% 76.9 59.8 51.6 67.0 54.7 85.6  1438.6 61.1 55.0 64.1 96.9
20% 712 60.4 47.1 69.4 55.6 854  1450.2 63.8 56.7 70.1 98.2
25% 71.1 60.2 482 67.9 55.2 84.7 14389 63.4 56.5 68.0 97.5

Table 14: Detailed results for different selection ratios (20% by default in our design).
Ratio VQAv2 GQA Vizwiz SQA-I TextVQA POPE MME MMBench(en) MMBench(cn) LLAVA-B Rel. (%)

5% 73.5 55.1 42.5 68.1 51.2 842 1371.7 58.8 54.1 60.8 91.8
10% 75.2 58.0 422 68.8 54.1 83.8 14403 60.0 54.6 68.8 94.8
20% 712 60.4 47.1 69.4 55.6 854  1450.2 63.8 56.7 70.1 98.2
40% 782 61.6 47.7 69.1 56.6 855 1484.1 62.5 56.1 67.3 98.3

This highlights a promising direction for future research — replacing the target MLLM with a
small proxy model during scoring to further reduce training cost without compromising selection
performance. This capability can be readily incorporated into COIDO with additional development
effort.

E Broader Impact

From a broader impact perspective, COIDO promotes efficient fine-tuning by selecting compact,
diverse, and informative subsets, which may reduce energy consumption and democratize access to
instruction tuning for resource-constrained users. However, data selection algorithms inherently
influence model behavior. Care must be taken to ensure fairness, representation, and robustness,
especially when deploying models downstream in sensitive or high-stakes applications.
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What is the stuffed animal
depicted in the image?

The stuffed animal in the
image is a stuffed monkey.

What type of computers are
present on the desk?

There are two types of
computers present on the
desk: a laptop computer and
a desktop computer, which
includes a monitor and a
keyboard. There is also a
mouse on the desk.

What is the position of the
stuffed monkey on the desk?

The stuffed monkey is leaning
against the laptop computer,
with both the monkey and
laptop situated on the desk.

Can you describe the overall
setup of the desk?

The desk setup consists of
a laptop computer and a
desktop computer with a
monitor, keyboard, and
mouse. The laptop computer
appears to be the primary
workstation, while the
desktop computer serves as
a secondary device. This
arrangement allows ...

4 P

“’!.‘L' )

What is the cat doing in
the image?

The cat is peeking out from
underneath a white comforter
or blanket, which is likely
on top of a bed

What color are the blankets
in the image?

The blankets in the image
are white

What color is the cat in the
image?

The cat in the image is
grey and white.

Can you infer the cat's mood
or behavior from the image?

Based on the image, the
cat appears to be in a
curious or playful mood,
as it is peeking out from
under the white blankets.
Cats often engage in such
behavior when they feel
comfortable and secure in
their environment. They
might be trying to play a
game of hide-and-seek ...

Figure 7: The best (left) and the worst (right) COIDO scores samples from LLaVA-133K datasets.
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What type of clothing is

What is the pattern of

black? Jacket the shirt? Striped
Are the candles behind the ves Do you see any people to No
wine bottles in the bowl? the left of the man?
What is the white clothing b Who is walking? Lad
item in this photo? ress ady

is in f f X Are there any umbrellas to
What is In front of the Wine the left of the people that No
candles in the image? bottles

walk on the sidewalk?

On which side of the image What is the lady wearing? X
is the large bowl? Left Shirt

What is the purpose of the
gray object? A.heat B.pest A
prevention C.cool D.play music

What is the little child
standing near? A.apple C
B.cat C.water D.basket

Figure 8: The best (top left) and the worst (top right) COIDO scores samples from GQA datasets.
The best (bottom left) and the worst (bottom right) COIDO scores samples from VQAv2 datasets.
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