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Abstract

In this paper, we identify pattern imbalance from sev-
eral aspects, and further develop a new training scheme to
avert pattern preference as well as spurious correlation. In
contrast to prior methods which are mostly concerned with
category or domain granularity, ignoring the potential finer
structure that existed in datasets, we give a new definition
of seed category as an appropriate optimization unit to dis-
tinguish different patterns in the same category or domain.
Extensive experiments on domain generalization datasets of
diverse scales demonstrate the effectiveness of the proposed
method.

1. Introduction

Over the past decade, the rise of deep neural networks

(DNNs) has promoted the rapid development of various ar-

tificial intelligence communities [13, 20, 22]. Despite the

remarkable success, DNNs tend to take shortcuts to learn

spurious features [24, 27]. The causal correlation between

these spurious features and ground truth only exists in the

training set, which hinders the generalization of DNN mod-

els. This phenomenon is also known as domain shift. More-

over, due to the incomplete distribution of training data, the

learned model may have a preference for gender, race, and

skin color, which will lead to serious ethical problems.

To tackle these problems, various methods have been

proposed to discuss the failure modes of out-of-distribution

(OOD) generalization [18,30,32,43]. Some researchers fo-

cus on encouraging the model to learn domain invariant fea-

tures. Ganin et al. [9] simultaneously optimize a standard

classifier and a domain classifier through adversarial train-

ing, where the features extracted by DNN can be used for

original classification but failed on domain recognition to

inhibit domain characteristics learning. Arjovsky et al. [1]

restrict the learned representations to be classified by sim-

ilar optimal linear classifiers in different domains. Other

researchers start by avoiding spurious features. Zhang et

*Corresponding author.

al. [42] argue that there exist sub-networks with preferable

domain generalization ability in the model and represent the

sub-network through a learnable mask. Nam et al. [28] as-

sume that the spurious features are generally embodied in

the texture or style of the image. They design SagNet to

decouple the content and style of the image, impelling the

feature extractor to pay more attention to the content infor-

mation. Most of the above methods manually design spe-

cific model structures to handle domain generalization.

Instead of designing specific networks, we are more
concerned about solving domain generalization by ex-
ploring the character of the dataset. In particular, sup-

pose a simple handwritten digit recognition scenario, where

a large amount of digit 0 possesses the red background and

digit 1 possesses the green background. The dataset with

only the above two patterns cannot be effectively learned,

since the model has no idea whether the task is to classify

the digits or the background color. Therefore, in a given

learnable data set, there must exist a minority of digit 0

with green background and digit 1 with red background.

These samples play a significant role in establishing the true

causal relationship between images and labels but have not

been paid enough attention. We call pattern imbalance the

phenomenon that different patterns in the same class ap-

pear imbalanced, thus leading to model learning preference.

Based on the above observations, we attribute the domain

generalization problem to the mining of hard or minority

patterns under imbalanced patterns. First of all, we iden-

tify the pattern imbalance in the dataset from several per-

spectives. We note that even though a model has achieved

favorable performance on average, Achilles’heel still exists

on some weak patterns. To alleviate the influence caused by

imbalance patterns, we pay more attention to these samples

of minority patterns and propose a training scheme based on

dynamic distribution. To this end, we define a new concept,

seed category, that is, the inherent pattern to distinguish, to

promote model training by paying full attention to various

patterns in the data set. Specifically, for samples of the same

class, the seed category is divided based on the distance of

the samples in the embedding space as a more fine-grained

weight allocation unit than previous methods [19, 32, 39].
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In this paper, this dynamic and fine-grained training scheme

enables our method to obtain excellent domain generaliza-

tion performance.

We argue that it is effective to apply more detailed weight

allocation on out-of-distribution generalization tasks, that

is, the patterns that are crucial but laborious to be learned

by the model deserve special treatments, which is the most

significant difference between our method and the previ-

ous methods. Prior methods, e.g., GroupDRO [32], mini-

mize the worst-case loss over domains to treat different do-

mains differently, and the performance will be limited by

the coarse granularity of grouped distribution. On the con-

trary, the flexibility of our method is revealed in two as-

pects, that is, the weight allocation unit is more detailed and

the seed category can be dynamically adjusted during the

training process. Our contributions can be summarized as

follows:

• We identify pattern imbalance generally existed in

classification tasks and give a new definition of seed

category, that is, the inherent pattern to recognize.

• We further develop a dynamic weight distribution

training strategy based on seed category to facilitate

out-of-distribution performance.

• Extensive experiments on several domain generaliza-

tion datasets well demonstrate the effectiveness of the

proposed method.

2. Related Work

Algorithms. Many methods have been proposed to enhance

domain generalization ability on out-of-distribution (OOD)

datasets. Peter et al. [29] and Carulla et al. [31] demon-

strate that in the linear model, learning invariant features

in the training set is conducive to finding invariant features

in the test set. Therefore, a common strategy is to invari-

ant features in visible domains, including minimizing the

maximum average difference [26] and adversarial feature

alignment [19]. Ganin et al. [9] utilize adversarial learning

to train a domain classifier jointly with the original clas-

sifier, and apply the gradient inversion layer to reduce the

domain information embedded in extracted representations.

Arjovsky et al. [1] manage to learn domain invariant fea-

tures that can be classified by an optimal linear classifier in

all domains. Sagawa et al. [32] assume that the key to learn-

ing out-of-distribution samples is to minimize the worst-

case group loss, and they also show stronger regularization

should be applied to narrow the generalization gap. Yan

et al. [40] enhance the domain generalization ability of the

model through the mixup of inter-domain samples. Wang et

al. [38] propose to use knowledge distillation to improve the

generalization ability through a smoother model, where the

student network learns richer features by learning the soft

labels crafted from the teacher network.

Interpretation. Based on spurious features, many arts have

proposed insightful explanations and effective algorithms.

Zhang et al. [42] believe that even if the model learns spu-

rious features, there still exist sub-networks that have fa-

vorable domain generalization performance. They call this

hypothesis lottery theory. Nagarajan et al. [27] analyze the

reasons why the network can learn spurious features in de-

tail. They experimentally demonstrated that even if invari-

ant features are fully predictive of the label while the spu-

rious features can not, or the invariant features can easily

accomplish the classification through an ordinary classifier,

the network will still learn spurious features. They argue

that learning spurious features is an inherent nature of opti-

mization algorithms.

Learnability. In addition to studying domain generaliza-

tion algorithms, quite a few works are committed to explor-

ing the learnability of domain generalization problems. A

more direct approach is to measure the distance between

the training domain and the test domain [2, 5]. Another

feasible framework is causal analysis, which has high ro-

bustness to the test domain shift caused by variable inter-

vention [12]. Ye et al. [41] propose a unified framework

to analyze the domain generalization problem. They define

the domain generalization problem theoretically through a

series of concepts such as variation, informativeness, and

extension function, and further give the learnability of the

domain generalization problem. They also present the up-

per and lower bounds of the generalization error through

thorough theoretical analysis.

3. Methodology
In this section, we will discuss in detail the identifica-

tion of pattern imbalance and the definition of seed cate-

gory. We first revisit the basic concept of domain gener-

alization problem, and then verify the existence of pattern

imbalance from the perspective of representations, activa-

tion path, and model optimization. Several prior methods

to deal with data imbalance are introduced to compare with

our views. A dynamic distribution algorithm based on seed

category is developed to boost domain generalization per-

formance and we further give related theoretical analysis.

3.1. Preliminary

We give the concept of domain generalization follow-

ing prior works [27, 41, 42]. The basic paradigm of the

domain generalization problem originates from multi-class

classification task X → Y = {1, 2, ...,K}, where K repre-

sents the number of total categories. Assume that the data

available in the training stage is Eseen while the inacces-

sible data during model training is Eunseen. The perfor-

mance of the model is evaluated on all domains Eall, where
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Eseen ⊂ Eall. For a certain visible domain e in Eseen,

the data point (Xe, Y e) in e can be seen as an indepen-

dent identically distributed sample from the corresponding

dataset De = {Xe
i , Y

e
i }n

e

e=1. For a given neural network

fθ : X → Y which has learned the mapping from sam-

ples to ground truth to some extent, where θ ∈ Θ represent

model parameters, we can thus define the loss on a domain

e as,

Re(θ) = E[L(fθ(Xe), Y e)] (1)

, where L denotes loss function, e.g., cross-entropy loss.

The objective of the domain generalization problem is min-

imizing the worst case (worst domain) classification loss,

i.e.,

min
θ∈Θ

max
e∈E

Re(θ). (2)

Since we can only obtain the data in the visible domain

Eseen in the training process, there exists an unknown do-

main shift between the visible domain Eseen and the invisi-

ble domain Eunseen. Domain generalization, as a challeng-

ing problem, has attracted the attention of many researchers.

3.2. Identifying Pattern Imbalance

We assume that some patterns that the model is difficult

to capture hinder the generalization to out-of-distribution

samples. A learnable domain generalization dataset must

contain causal correlations between samples and labels, and

the model may neglect the causality presented by some key

patterns, thus leading to the susceptibility to domain shift.

Previous works propose to improve the generalization abil-

ity based on the noticeable imbalance on categories [11] and

domains [32], and we experimentally confirm that a more

fine-grained pattern imbalance exists. The model shows

poor performance on these modes, even if it has high ac-

curacy on average. In this section, we will identify the pat-

tern imbalance of neural networks on datasets from three

aspects.

Data view. The dataset displays pattern imbalance in the

representation space of the neural network. Similar to the

previous works [7, 21], we consider that the model can be

decoupled into a feature extractor and a classifier. From the

perspective of representation learning [3], the level of inter-

class dispersion and intra-class compactness of the feature

space determines the quality of representations. Therefore,

we investigate the pattern imbalance from the output rep-

resentations. We choose a full-trained model on the CI-

FAR10 dataset to conduct experiments. It can be observed

from Fig. 1(a) that the representations differ in optimization

extent of identical categories, despite that the model pos-

sesses high accuracy on average (e.g., epoch 100). We use

the color of data points to represent its classification loss

(the loss has been re-scaled for convenience of visualiza-

tion) and use TSNE [35] to facilitate visualization.

(a) Representation space

(b) Activation path

Figure 1. Dimension reduction results of representation space and

activation path on CIFAR10 dataset (class 0-airplane, 3-cat, 5-dog)

of different training epochs. We can observe from the figure that

pattern imbalance appears in the representation space and activa-

tion path, which indicates the widespread of this phenomenon, de-

spite that the model possesses favorable performance on average.

The data point color represents its classification loss.

Model view. Different patterns present different acti-

vation paths in the neural network. Taking the ResNet34

model trained on the CIFAR10 dataset as an example, we

extract the activation map output by the network respec-

tively after the initial convolution layer, four basic block

stages, and fully-connected layers. For each activation map,

we select the index of the corresponding channel with the

highest average activation as a component of the activa-

tion path. In this way, we utilize a 6-dimension vector to

characterize the activation path of data flow in the network.

Fig. 1(b) displays that after dimension reduction, the pattern

imbalance also exists in the activation path.

Optimization view. Different patterns have different

training extent. As mentioned above, we use the classifi-

cation loss to characterize the optimization extent of corre-

sponding data samples.

It is easy to notice that the above discussion cannot fully

explain the pattern imbalance, since there is no explicit

alignment among different views. In order to further prove

the existence of pattern imbalance, we explore the approach

to depicting the alignment of these views. We apply clus-

tering results to explicitly portray the pattern imbalance.

We respectively cluster the representations, sample activa-

tion paths and classification loss from three views using K-

means algorithm [23] of the same group data (i.e. same

classes and training epoch), and specify the number of clus-

tering centers as K. We subsequently define the Cluster

Consistency (CCT) of two clustering results A and B as the

conditional probability that for any two data samples, they

are in the same cluster in results B on the condition that

they are also in the same cluster in results A, i.e.,

CCTAB = Eg∈GEsi,sj∈g,RA
si

=RA
sj
[ (RB

si = RB
sj )] (3)

, where RA represents a clustering result and RA
si = RA

sj
represents sample si, sj are in the same cluster. g repre-

sents one data group and G represents all data groups. The
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Pair Random Rep-Path Rep-Loss Path-Loss

CCT 0.118 0.241 0.577 0.508

Table 1. The cluster consistency metric conducted on the CI-

FAR10 dataset. Rep-Path represents the CCT of clustering results

of representation and activation path. Random represents the CCT

of two randomly divided data groups. We set the number of clus-

ters K as 10.

cluster consistency metric CCT quantifies the alignment de-

gree of clustering results. We conduct experiments on the

CIFAR10 dataset. It can be observed from Tab. 1 that the

consistency metric among three clustering results of three

views is much higher compared with randomly grouped re-

sults, which further verifies the existence of pattern imbal-

ance in the dataset. Details about the implementations can

be found in the supplementary materials.

3.3. Fine Grained Perspective

Previous data-driven generalization algorithms show

bias on some specific groups based on category imbalance

or domain imbalance. The Distributionally Robust Opti-

mization (DRO) based algorithm [15,32] is to minimize the

worse domain loss. Traditional class-imbalance-based algo-

rithms [6,11], conduct over-sampling on long-tailed classes

using mixup to generate new samples or under-sample ma-

jority classes. In the previous section, we find more fine-

grained pattern imbalance and this phenomenon can not

be alleviated simply by taking special treatment on domain

granularity or category granularity. Moreover, previous arts

on Online Hard Example Mining (OHEM) [33] directly se-

lect samples with top K large loss in a batch for gradient

backpropagation. However, we argue that the model should

not learn the knowledge reflected by a single difficult sam-

ple, but the knowledge contained in a group of special sam-

ples with similar characteristics, that is, more macro pat-

terns. Therefore, the fine-grained perspective introduced by

pattern imbalance, as a compromise between the above two

granularity, not only solves the imbalance problem in a su-

perior way but also avoids their shortcomings.

3.4. Seed Category

In this section, we define the concept of seed category

to more intuitively reveal the phenomenon of pattern imbal-

ance. In the above analysis, the seed category can be simply

obtained by clustering the samples in the embedding space.

However, in order to facilitate the theoretical analysis and

the interpretability of the algorithm, we do not choose to

obtain seed categories by clustering.

Intuitively, the grouping criterion of seed categories

should be based on the distance of samples in certain em-

bedding space, that is, the farther the distance between

two samples is, the more likely they are in the different

seed categories, while the closer they are, the more likely

they are in the same seed categories. For any two samples

si, sj , we define the distance between them as D(si, sj) =
Dm(Ψ(si),Ψ(sj)), where Dm represents a distance metric,

i.e., L2 distance and Ψ represents a representation embed-

ding function. We then define two points si, sj are adjacent

as they satisfy D(si, sj) < ξ. Directly obtaining seed cate-

gories from the above definition is difficult since all samples

may be indirectly or directly adjacent from a macro point of

view. To avoid this ambiguity, we regard all samples and

their adjacent relationships as a structure of a graph, where

the samples represent the vertices of the graph and the adja-

cent relationships between samples represent the edges be-

tween vertices. In this way, we can conveniently and intu-

itively give the definition of seed,

Definition 1 (Seed) For a given dataset D and the above
concept of adjacent samples, we define seed set S if and
only if for any sample x ∈ D − S, there exists at least one
s ∈ S that satisfies x and s are adjacent samples. We define
each sample in the smallest seed set S as seed.

We presume that each seed represents a possible pattern

in the dataset. We can control the number of seeds by ad-

justing the threshold ξ. With the definition of seed, we can

readily define the seed category in the dataset. For each

sample that does not belong to the smallest seed set S, we

randomly select a seed adjacent to it. We call that this sam-

ple is subordinate to the corresponding seed. We can then

get the definition of seed category:

Definition 2 (Seed Category) For any seed s, we define the
union of this seed and the samples Bs subordinate to it as
seed category, i.e.,

Cseed = {s} ∪ Bs. (4)

In this way, the dataset can be divided into several seed

categories, and the seed categories correspond to the seeds

one by one. We consider that each seed category represents

a pattern in the original dataset, so we can regard the seed

category as the basic optimization unit of the algorithm. We

further develop a dynamic distribution allocation algorithm

based on seed category.

The dynamic distribution allocation algorithm is illus-

trated as follows. Firstly, considering the training stabil-

ity and reducing the computational cost, we perform the re-

distribution, i.e., update the seed categories, every t0 steps.

Specifically, we recalculate the seed categories according to

representations or classification loss. Suppose the number

of seed categories is |C|. During two rounds of redistribu-

tion, we will maintain a distribution weight vector q ∈ R
|C|

initialized to all one. Secondly, in each normal step, we

randomly select a data batch from each seed category with

7572

Authorized licensed use limited to: NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS. Downloaded on May 16,2024 at 09:52:50 UTC from IEEE Xplore.  Restrictions apply. 



Algorithm 1 Dynamic Distribution Based on Seed Cate-

gory

Require: Original data D, total training steps T , re-

distribution cycle t0
Ensure: Model parameters θ

1: for t= 1 to T do
2: Conduct re-distribution and update seed category

for D every t0 steps.

3: Maintain a weight distribution vector q on these

seed categories.

4: Sample data from each seed category as a batch.

5: Calculate average losses and update weights for

each seed category.

6: Weight normalization.

7: Update model parameters θ according to distribu-

tion weight vector q.

8: end for

batch size B. The merged batch (|C| × B samples) col-

lected from all seed categories is then sent to the model for

evaluation to obtain the average classification loss of each

seed category. The corresponding position of the distribu-

tion vector q is then updated according to the exponent of

classification loss of each seed category. The distribution

vector q is normalized and then served as the weight of the

loss of each seed category. Finally, we back-propagate the

loss and update the model parameters, as shown in Alg.1.

Implementation details. In graph theory, calculating seed

or seed categories of a dataset is an NP-hard problem

(O(20.61n)) [8] and there is no effective algorithm to deal

with large-scale data at present. Therefore, we consider

simplifying the above problems. From the above illus-

tration, we know that the seed category is divided based

on the distance of samples in the embedding space. We

can of course apply a clustering algorithm to obtain seed

categories. However, we provide another convenient ap-

proach. We hope the grouping of the seed category will

bring as much discrimination between any two distribu-

tion of seed categories as possible. For two seed cate-

gory distributions P and Q, JS divergence [25] can be

used to measure their distance as a symmetry criterion, i.e.,

JS(P ||Q) = 1
2KL(P ||M) + 1

2KL(Q||M), where M =
1
2 (P +Q). The overlap between these two distributions can

thus be measured by O(PQ) = −Ex∼P [log(G(F (x)))] −
Ex∼Q[log(1−G(F (x)))], where G(x) = 1

1+e−x and F (x)
is a feature extractor. This criterion is in the form of bi-

nary cross-entropy loss, which also explains the rational-

ity of using classification loss as a sign of hard samples in

previous work [33]. The conclusion can be naturally ex-

tended to multi-label classification tasks. We now want to

seek out a grouping strategy to make the distribution of dif-

ferent seed categories more and more scattered. Since we

Figure 2. Sample visualization of out-of-distribution datasets

(PACS, OfficeHome, VLCS).

can further obtain seed categories based on original cate-

gories or domains, the classification loss can be sorted and

used to obtain seed categories according to their order. In

our experiments, we further divided each domain of out-of-

distribution datasets into four seed categories. Details about

proofs can be found in the supplementary materials.

Detailed theoretical analysis can be found in the supple-

mentary materials.

4. Datasets and Model Evaluation

In this section, we illustrate the datasets we used and the

methods for model selection in detail.

4.1. Datasets

We employ several widely used benchmark out-of-

distribution (OOD) datasets to evaluate our methods, i.e.,

ColoredMNIST [16], RotatedMNIST, PACS [17], Office-

Home [37], VLCS [34]. The original MNIST dataset is

handwriting digits of 0-9, and has a training set of 60000

examples, and a test set of 10000 examples. For ColoredM-

NIST, we first assign a binary label y based on digits (y = 0
for digits 0-4, y = 1 for digits 5-9) and flip the label with

probability 0.25. The images are colored in either red or

green according to their label and we flip the color with

probability e. We construct three domains where flip prob-

ability e are set as 0.1, 0.2, 0.9. For RotatedMNIST, the

original images are rotated by an angle and we construct six

domains where the rotated angles are set as 0◦, 15◦, 30◦,

45◦, 60◦, 75◦. For PACS, there exist four domains, i.e., Art

Painting(2048 images), Cartoon(2344 images), Photo(1670

images) and Sketch(3929 images), and each domain con-

tains seven categories. For OfficeHome dataset, it consists

of four domains, i.e., Art, Clipart, Product and Read-World,

and each domain consists of 65 categories. For VLCS

dataset, it includes four domains, that is, Caltech101, La-

belMe, SUN09, VOC2007, where each domain consists of

five categories. Some examples in these datasets can be seen

in Fig. 2.
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Algorithm ERM DANN IRM GDRO MLDG MMD MTL ARM SagNet VREx Ours

Train-domain validation set

A 81.1 81.9 82.7 86.2 81.8 84.9 82.5 82.1 83.0 81.4 82.0

C 81.6 77.8 78.5 80.5 80.0 81.0 79.9 82.9 78.6 81.4 80.3

P 97.0 95.1 96.4 96.2 95.3 95.7 95.5 93.6 95.3 96.0 96.8

S 74.1 75.4 74.3 75.3 69.5 73.3 79.6 76.0 80.7 77.8 80.8

Avg. 83.5 82.6 83.0 84.5 81.6 83.7 84.4 83.6 84.4 84.2 85.0
Leave-one-domain-out cross validation

A 82.7 79.0 82.7 81.3 82.6 81.6 80.0 77.2 80.7 81.8 83.5

C 80.0 76.1 78.5 76.8 79.5 80.8 80.3 82.9 78.1 79.9 79.9

P 95.3 95.1 96.4 94.8 97.7 95.1 96.7 93.1 95.7 95.4 96.2

S 75.3 72.4 74.3 80.3 70.5 71.7 74.6 73.2 63.6 72.8 83.2

Avg. 83.3 78.6 83.0 83.3 82.5 82.3 82.9 81.6 79.6 82.4 85.7
Test-domain validation set

A 80.9 74.0 72.4 72.4 82.6 81.2 84.5 73.5 77.5 81.8 80.2

C 81.2 75.6 77.1 79.0 81.3 81.7 76.1 76.7 78.6 79.7 79.6

P 95.1 91.0 90.9 94.8 94.9 95.1 94.2 94.7 95.7 95.3 94.4

S 78.1 76.1 74.1 72.6 73.2 78.8 74.6 70.6 77.4 76.3 84.3

Avg. 83.8 79.2 78.9 79.7 83.0 84.2 82.3 78.9 82.3 83.3 84.6

Table 2. Evaluation of the domain generalization ability on PACS dataset. We present the results of three model selection methods for each

domain (A, C, P, S) and average accuracy (Avg.) for a comprehensive assessment. All experiments are conducted on the ResNet50 model.

We compare our method with recently proposed OOD algorithms, i.e., ERM, DANN, IRM, GDRO(GroupDRO), MLDG, MMD, MTL,

ARM, SagNet, and VREx. All these OOD algorithms are implemented as their official settings. All values are shown in percentages.

4.2. Model Selection

Since the data distribution of the test set and validation

set is not identical in the domain generalization problem, the

optimal model selection method is not as straightforward as

traditional supervised learning. Following [10], we employ

three model selection methods stated below.

Train-domain validation set. Each training domain is fur-

ther divided into a training subset and a validation subset.

All the validation subsets are put together to form the val-

idation set and all the training subsets are put together to

form the training set. We finally select the model that per-

forms best in the validation set.

Leave-one-domain-out cross validation. Each time we

leave one training domain as the validation domain. Assum-

ing there are N domains, we want to employ each training

domain as the leave-out domain each training round, and fi-

nally select the model with the best average performance in

all leave-out domains. We then conduct model training in

all training domains with the optimal hyper-parameter and

regard this model as the final selected model.

Test-domain validation set. The selected model is ex-

pected to possess favorable performance in the test domain,

so here we use samples in the test domain for model eval-

uation. Note that the model should not have reached the

test domain, it is necessary to strictly control the number

of test samples the model can assess, such as several lim-

ited queries. Since each validation consumes queries, this

method does not allow early stopping and only performs

model evaluation in the last step.

5. Experiments
In this section, we conduct extensive experiments to

evaluate the performance of the proposed method, which

well demonstrates the effectiveness of our method com-

pared with recent works.

Settings. We choose ResNet50 as our model architecture

as [10,41]. For each model training, we run 5000 steps with

an initial learning rate of 1× 10−3 for MNIST datasets and

5 × 10−5 for large-scale datasets. We re-calculate the seed

category every 1000 steps and the batch size of each seed

category is adjusted to satisfy a fixed total batch size. For

large-scale datasets, we apply data augmentations, such as

random resized crop, random horizontal flip, color jitter and

random grayscale. All images are resized to a fixed size of

224 × 224 and normalized to facilitate faster convergence.

For training stability, before we apply the exponential op-

eration to the classification loss, we multiply the loss with

η = 0.01 following [32]. For seed category calculation,

we conduct experiments using K-means clustering [23] and

loss ranking as illustrated in implementation details, and we

display results of the latter setting in Sec. 5.1 and Sec. 5.2

and compare these two settings in Sec. 5.3.

OOD Algorithms. We compare our proposed method with

recent OOD algorithms, including ERM (Empirical Risk
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Algorithm ERM DANN IRM GDRO MLDG MMD MTL ARM SagNet VREx Ours

Train-domain validation set

0.1 71.6 71.5 61.0 72.5 72.4 49.3 71.8 72.8 71.4 72.3 72.8

0.2 72.6 73.2 67.8 72.2 72.6 63.4 71.6 72.6 73.5 73.0 73.2

0.9 9.8 10.0 9.8 10.2 10.1 10.8 10.2 10.1 10.3 10.2 10.7

Avg. 51.3 51.6 46.2 51.6 51.7 41.2 51.2 51.8 51.7 51.8 52.2
Leave-one-domain-out cross validation

0.1 61.4 50.9 48.8 50.9 49.2 49.5 47.8 47.4 50.7 72.2 55.6

0.2 50.5 50.1 50.2 51.0 53.3 50.6 66.8 50.6 49.4 50.7 71.8

0.9 9.8 10.0 9.8 10.2 10.1 9.8 10.2 10.1 10.3 10.0 10.2

Avg. 40.6 37.0 40.6 37.3 37.5 36.7 41.6 36.0 36.8 44.3 45.9
Test-domain validation set

0.1 64.6 69.7 51.0 67.1 70.1 50.5 67.2 77.8 64.6 72.2 71.8

0.2 68.5 70.6 62.3 68.4 71.0 50.6 68.8 70.3 68.7 71.7 72.5

0.9 26.5 13.5 50.6 38.5 23.8 10.3 20.1 17.5 28.4 29.4 37.1

Avg. 53.2 51.3 54.7 58.0 54.9 37.1 52.1 55.2 53.9 57.8 60.5

Table 3. Evaluation of the domain generalization ability of the proposed method compared with recent OOD algorithms on the ColoredM-

NIST dataset. 0.1, 0.2, 0.9 represent the color flip probability of three domains. All values are shown in percentages.

Minimization) as baseline [36], IRM (Invariant Risk Min-

imization) [1], GroupDRO (Group Distributionally Robust

Optimization) [32], MLDG (Meta Learning Domain Gener-

alization) [18], MMD (Maximum Mean Discrepancy) [19],

DANN (Domain Adversarial Neural Network) [9], ARM

(Adaptive Risk Minimization) [43], SagNet (Style Agnos-

tic Networks) [28], MTL (Marginal Transfer Learning) [4],

VREx (Variance Risk Extrapolation) [14]. All these OOD

algorithms are implemented as their official settings.

5.1. Performance on Large Scale Dataset

In this section, we evaluate our method on several large-

scale out-of-distribution datasets, i.e., PACS, OfficeHome

and VLCS. Tab. 2 shows our experimental results on the

PACS dataset. We evaluate our method compared with

ERM, DANN, IRM, GDRO(GroupDRO), MLDG, MMD,

MTL, ARM, SagNet, VREx. For a comprehensive evalua-

tion, we employ the above three model selection methods,

train-domain validation set, leave-one-domain-out cross-

validation and test-domain validation set. We display the

results for each environment setting (A, C, P, S) and calcu-

late the average accuracy for the final evaluation. To facil-

itate observation, all results are shown in percentages. As

observed in the table, our method presents outstanding per-

formance compared with other methods, and the average ac-

curacy have achieved 85.0%, 85.7%, 84.6% on three model

selection methods, which well verified the effectiveness of

using seed categories as distribution allocation unit to mine

the pattern imbalance. We also display the domain general-

ization performance on the OfficeHome dataset and VLCS

dataset, as shown in Tab. 6 and Tab. 7. For OfficeHome and

VLCS datasets, we only display the results of the leave-one-

domain-out cross-validation model selection method due to

space limitation.

5.2. Performance on ColoredMNIST and Rotat-
edMNIST

We then conduct experiments on ColoredMNIST and

RotatedMNIST datasets. For ColoredMNIST, we evaluate

the domain generalization ability for each environment, that

is, different color flip probabilities of 0.1, 0.2, 0.9. We dis-

played results on three model selection methods. As shown

in Tab. 3, our method shows favorable domain generaliza-

tion performance compared with recently proposed meth-

ods. Especially, our method shows superior performance

under the test-domain validation set model selection setting,

which is also used in [42]. This phenomenon demonstrates

that our method can sensitively capture the unbalanced pat-

terns in the training data set, which is easily ignored in

the original training scheme. For RotatedMNIST, we also

only display the results of the leave-one-domain-out cross-

validation model selection method, as shown in Tab. 8.

5.3. Redistribution Method Analysis

We further explore how different seed category calcula-

tion methods will affect the domain generalization perfor-

mance. As illustrated above, we provide two approaches,

i.e., using ranking classification loss or employing cluster-

ing. We also explore the number of seed categories that

one original domain should be divided (We test 2,3,4 since

more divided groups will damage the parallelism of the al-

gorithm). As shown in Tab. 4, the loss-based redistribution

method with four seeds per domain performs best.

7575

Authorized licensed use limited to: NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS. Downloaded on May 16,2024 at 09:52:50 UTC from IEEE Xplore.  Restrictions apply. 



Datasets ColoredMNIST PACS

Methods Loss Cluster Loss Cluster

Seeds per domain 2 3 4 2 3 4 2 3 4 2 3 4

Model Selection 1 51.5 51.5 52.2 51.6 51.6 51.9 82.9 83.0 85.0 82.5 82.6 82.6

Model Selection 2 38.5 41.8 45.9 37.3 37.3 37.5 82.8 84.2 85.7 83.5 83.5 83.8

Model Selection 3 59.2 57.4 60.5 54.8 59.3 53.0 83.1 79.6 84.6 82.2 81.8 80.9

Table 4. Performance vs. seed category calculation methods.

Datasets CMNIST RMNIST PACS OfficeHome VLCS

Methods Baseline Ours Baseline Ours Baseline Ours Baseline Ours Baseline Ours

PCMA(G) 0.186 0.186 0.437 0.437 8.112 8.124 8.113 8.128 8.117 8.125

TTR(min) 6.18 7.14 7.75 9.62 44.15 48.14 66.53 71.19 76.57 81.71

Table 5. Efficiency of our method compared with baseline. PCMA represents peak CUDA memory allocated and TTR represents the time

of a training round.

Algo. A C P R Avg.

ERM 54.7 47.3 72.7 74.0 62.2

DANN 54.3 51.1 73.0 67.4 61.5

IRM 55.4 49.1 68.2 75.0 61.9

GDRO 55.7 52.0 71.4 74.7 63.4

MTL 53.0 47.1 70.5 76.3 61.7

ARM 51.9 46.8 69.8 71.0 59.9

SagNet 53.1 49.0 72.5 73.4 62.0

Ours 57.5 50.4 73.2 74.0 63.8

Table 6. Evaluation on OfficeHome datasets. All values are shown

in percentages. A, C, P, R represent four domains of OfficeHome,

i.e., Art, Clipart, Product, Real World.

Algo. C L S V Avg.

ERM 98.1 59.0 70.1 74.6 75.4

DANN 98.5 63.0 56.9 74.6 73.2

IRM 95.4 59.3 74.2 76.0 76.2

GDRO 94.9 66.3 69.7 71.3 75.6

MTL 96.1 59.5 70.0 73.0 74.6

ARM 94.6 62.9 74.0 70.3 75.4

SagNet 93.4 60.4 75.1 75.0 76.0

Ours 97.4 66.4 70.1 72.8 76.7

Table 7. Evaluation on VLCS datasets. All values are shown in

percentages. C, L, S, V represent four domains of VLCS, i.e.,

Caltech101, LabelMe, SUN09, VOC2007.

5.4. Algorithm Efficiency

Since our proposed method introduces extra computation

about re-calculating seed categories, we thus investigate

the algorithm efficiency regarding training time and CUDA

memory consumption, experimental results are summarized

as Tab. 5. All training rounds run 5000 steps on a Tesla

Algo. 0 15 30 45 60 75 Avg.

ERM 88.2 98.4 99.1 99.0 98.9 95.8 96.6

IRM 78.9 77.4 89.6 93.3 93.3 82.7 85.9

GDRO 95.5 97.9 97.6 98.6 98.8 96.1 97.4

ARM 91.3 98.8 98.9 99.1 98.7 95.9 97.1

Ours 94.8 99.6 99.0 99.1 98.8 96.6 98.0

Table 8. Experimental results on RotatedMNIST datasets. 0, 15,

30, 45, 60, 75 represent the angle that images will rotate in corre-

sponding domains.

V100 32GB GPU with the same domain left out. We can

observe that our method consumes little extra time and has

almost no increase in CUDA memory.

6. Conclusions

In this paper, we identify the pattern imbalance that gen-

erally existed in datasets from three views and then com-

pare this fine-grained perspective with prior works. We fur-

ther give a new definition of seed category to concretize the

concept of pattern imbalance. We finally provide an effec-

tive algorithm based on periodically calculating seed cate-

gories to boost domain generalization. We firstly propose

this fine-grained optimization perspective, where dynamic

distribution allocation is conducted based on seed category

to solve the problem of domain generalization by explor-

ing the character of the dataset. Extensive experiments on

several benchmark out-of-distribution datasets well demon-

strate the superior performance of our proposed method.
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