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Abstract

Federated Learning (FL) is an emerging paradigm that en-
ables multiple users to collaboratively train a robust model
in a privacy-preserving manner without sharing their private
data. Most existing approaches of FL only consider tradi-
tional single-label image classification, ignoring the impact
when transferring the task to multi-label image classification.
Nevertheless, it is still challenging for FL to deal with user
heterogeneity in their local data distribution in the real-world
FL scenario, and this issue becomes even more severe in
multi-label image classification. Inspired by the recent suc-
cess of Transformers in centralized settings, we propose a
novel FL framework for multi-label classification. Since par-
tial label correlation may be observed by local clients during
training, direct aggregation of locally updated models would
not produce satisfactory performances. Thus, we propose
a novel FL framework of Language-Guided Transformer
(FedLGT) to tackle this challenging task, which aims to
exploit and transfer knowledge across different clients for
learning a robust global model. Through extensive exper-
iments on various multi-label datasets (e.g., FLAIR, MS-
COCO, etc.), we show that our FedLGT is able to achieve
satisfactory performance and outperforms standard FL tech-
niques under multi-label FL scenarios. Code is available at
https://github.com/Jack24658735/FedLGT.

1 Introduction

Federated Learning (FL) is a machine learning paradigm
that enables multiple clients to collaboratively perform
model training by leveraging their decentralized data. This
approach offers significant advantages over traditional cen-
tralized approaches, as it mitigates the risks of privacy dis-
closure and is efficient for large-scale machine learning tasks
without collecting large amounts of data on the server. FL
has been successfully applied in real-world studies including
health care, finance, and recommendation systems. As a pi-
oneering work, the vanilla FL algorithm FedAvg (McMahan
et al. 2017) learns from multiple local clients in a privacy-
preserving manner, and the trained models or gradients are
sent to the central server. Then, the server performed an ag-
gregation step to obtain a global model. However, user data
distribution often has non-IID (non-independent and iden-
tical distribution) characteristics in the real world, which is
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Figure 1: Challenges in multi-label federated learning. Since
diverse label correlations are observed across clients, aggre-
gating local models might not be sufficiently generalizable.

referred to as data heterogeneity. Data heterogeneity across
different clients can be caused by various factors, such as
demographic diversity, data collection methods, and sensor
differences. In the presence of data heterogeneity, FedAvg
may struggle to effectively leverage the data diversity across
clients, resulting in degraded performance of the aggregated
global model.

Typically, data heterogeneity contains the aspects such as
label distribution skew or domain shift, presenting substan-
tial obstacles in the progress of FL development. For in-
stance, consider a scene understanding task in FL. In this
scenario, certain clients possess a larger volume of indoor
scene data, while others may have more outdoor scene data.
As aresult, their local models tend to be biased towards their
respective scenes due to environmental variations in light-
ing, texture, etc., posing challenges in achieving a consen-
sus during the model aggregation process (i.e., hard to ob-
tain a robust global model). In addition, some clients may
have more data for specific classes, resulting in a class im-
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balanced issue that can also cause the performance degrada-
tion of the aggregated global model. Prior works (Li et al.
2020; Karimireddy et al. 2020; Gao et al. 2022; Li, He, and
Song 2021; Li et al. 2021) tackle data heterogeneity mainly
on standard single-label image classification benchmark-
ing datasets, e.g., EMNIST (Cohen et al. 2017), CIFAR-
10 (Krizhevsky, Hinton et al. 2009), etc. However, multi-
label image classification is a more practical and challenging
setting. For example, single-label image classification usu-
ally needs the model to recognize only one object or one
main concept in an input image, whereas multi-label image
classification aims to recognize all the object categories or
concepts, which is more challenging due to the understand-
ing of the inter-class relationships.

To mitigate performance degradation induced by data het-
erogeneity (e.g., label distribution skew) on FL, various
works (Li et al. 2020; Karimireddy et al. 2020; Gao et al.
2022; Li, He, and Song 2021; Li et al. 2021; Huang, Ye,
and Du 2022; Su et al. 2022; Mendieta et al. 2022; Wang
et al. 2020; Tan et al. 2021; Zhuang et al. 2021; Luo et al.
2021) have been proposed to address this impact. For ex-
ample, FedProx (Li et al. 2020) introduces a regularization
term to mitigate the label distribution skew issues from the
local learning step of FL. On the other hand, a previous FL
method for addressing domain shift called FedBN (Li et al.
2021) proposes utilizing the batch normalization layer (Ioffe
and Szegedy 2015) in local clients to capture the domain-
specific information. However, these FL previous works ne-
glect the emerging form of data heterogeneity such as multi-
label issues but only focus on traditional single-label non-
IID issues, leaving the “multi-label FL” task to remain un-
resolved and challenging.

Intuitively, it is achievable to directly apply the cur-
rent multi-label classification frameworks from centralized
learning (Chen et al. 2019b,a, 2020; Lanchantin et al. 2021)
to FL. However, when performing multi-label classification
under FL, the objects or concepts present in an image may
exhibit significant variations across clients, potentially caus-
ing performance deterioration. For example, as Figure 1 de-
picted, the positive label set of each client is inconsistent
or even disjoint, learning of the label correlation may have
unfavorable impacts and degrade the global model perfor-
mance after the aggregation step. Thus, one of the main chal-
lenges for multi-label image classification in FL is how to ef-
fectively learn label relationships, as well as precisely cap-
ture the complex connections between visual features and
associated labels in a privacy-preserving manner.

In this paper, we propose a framework called FedLGT
that aims to tackle the multi-label FL issues and ver-
ify our effectiveness on a challenging multi-label FL
dataset (Song, Granqvist, and Talwar 2022) called FLAIR.
Our FedLGT utilizes a pre-trained off-the-shelf text encoder
by CLIP (Radford et al. 2021) to construct universal label
embedding. The label embedding contains rich and distinct
relationships among the labels. Utilizing this technique en-
ables the clients to perform local learning with more dis-
criminative label relationships. Besides, with the goal of
training a robust global model from decentralized data, we
also design a knowledge-transfer approach called Client-
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Aware Masked Label Embedding inspired by (Lanchantin
et al. 2021) to assist local learning via knowledge from the
global model. Specifically, the approach aims to transfer and
distill the knowledge from the global model by encouraging
the local models to learn more for the classes that the global
model still predicts with relatively low confidence. Through
conducting extensive experiments on FLAIR, our proposed
framework is able to derive a global model with better gen-
eralization performance without any communication over-
heads.

Our contributions to this work are highlighted as follows:

* To the best of our knowledge, we are the first to tackle
the problem of label discrepancy across different clients
for multi-label FL.

We propose Client-Aware Masked Label Embedding
when training FedLGT. It is served as a customized
model update technique while exploiting the label cor-
relation at each client.

We utilize Universal Label Embedding in FedLGT,
which advances pre-trained label embedding derived
from large-scale vision and language models (e.g., CLIP)
for aligning local models for multi-label FL.

2 Related Works
2.1 Federated Learning

In general, the common vanilla FL algorithm (i.e., Fe-
dAvg (McMahan et al. 2017)) consists of several steps in-
cluding local training, uploading client models, performing
model aggregation, and broadcasting back to the clients on
the server side. Under such FedAvg training procedures,
the inconsistency between local objectives and the global
objective would be more serious under data heterogeneity
(e.g., domain shift). The main direction of existing previ-
ous methods could be broadly divided into label distribution
skew or domain shift. Label distribution skew can arise due
to disparate local data in different clients, leading to bias
local models towards majority classes. On the other hand,
domain shift does not specifically highlight the differences
in label distributions across clients. Instead, the image fea-
tures may exhibit significant variations, such as cartoons,
sketches, etc., even under the same label annotation. In the
subsequent sections, we mainly introduce the works that are
popular or more relevant to our paper.

Label Distribution Skew Label distribution skew is a
kind of common challenge in FL. For example, assume that
some hospitals want to train a model to classify medical
images. However, one client may have some rare diseases,
while other clients have other common diseases. Thus, the
label distribution will differ significantly or even disjoint
(i.e., label spaces are not overlapped), leading to degradation
of model performance. In terms of label distribution skew,
existing FL methods focus on handling client local bias
compared to the global model. For instance, FedProx (Li
et al. 2020) restricts the gradient updates by introducing a
proximal term to improve the convergence speed. SCAF-
FOLD (Karimireddy et al. 2020) designs a new control vari-
ate for each client by measuring the gradient dissimilarity
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between local clients and the global model, utilizing this
mechanism to refine the local clients’ drift. More recently,
FedDC (Gao et al. 2022) learns an auxiliary local drift vari-
able by Expectation-Maximum (EM) algorithm to track the
inconsistency of local-global models.

Domain Shift Domain shift (i.e., distribution shift) is an-
other challenge among many real-world FL applications. For
instance, a healthcare organization wants to perform train-
ing on patient data of certain diseases (i.e., the label dis-
tributions are the same) from different hospitals. Each of
them maintains its own private dataset of medical images
which may have different characteristics due to variations in
the data acquisition process, patient populations, etc., result-
ing in potential domain shifts. Several previous works have
been proposed to mitigate the domain shift of FL (Li et al.
2021; Huang, Ye, and Du 2022; Su et al. 2022). FedBN (Li
et al. 2021) does not aggregate the parameters of batch nor-
malization (BN) layers, so the domain-specific information
can be preserved in local clients. FCCL (Huang, Ye, and Du
2022) builds a cross-correlation matrix on the server with the
help of unlabeled public data. Besides, it balances the inter-
domain and intra-domain information in the local training
stage to tackle the domain shift. Recent FL. works (Su et al.
2022; Guo et al. 2023; Chen et al. 2022; Sun et al. 2022)
utilize vision-language pre-trained models, which perform
prompt tuning during training rounds and thus reduce the
number of learnable parameters. FedAPT (Su et al. 2022)
learns a global adaptive network with the global prompt un-
der the FL setting, then the framework generates domain-
specific prompts for CLIP to handle the domain shift is-
sue under FL. Inspired by this trend, our approach leverages
vision-language pre-trained models (e.g., CLIP) to circum-
vent the challenges of training components that could dete-
riorate the model performance under the constraints of FL.

2.2 Multi-Label Image Classification

Centralized Learning Multi-label image classification
has become an emerging research field since several real-
istic applications may view this task as a foundation, such
as weakly supervised segmentation, scene understanding,
etc. Since multi-label image classification requires recog-
nition of all objects or concepts present in an image, it
is critical yet challenging to understand the inherent rela-
tionships between different classes. There are many direc-
tions for multi-label image classification, such as improving
loss functions (Ridnik et al. 2021), modeling label relation-
ships (Chen et al. 2019b; Lanchantin et al. 2021), etc. The
most related to our work is how to model the label relation-
ships so that co-occurrence dependencies between different
classes would be considered appropriately. Specifically, re-
cent methods (Chen et al. 2019b,a, 2020) utilize graph for-
mulation to represent label relationships. For example, ML-
GCN (Chen et al. 2019b) build Graph Convolutional Net-
work (GCN) to represent the correlation between objects or
concepts, and such a method usually builds label correlation
graphs based on extra knowledge from label co-occurrence
statistics.

Based on Transformer, C-Tran (Lanchantin et al. 2021)
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fuses image features and the associated labels by label mask
training. Similar to BERT (Devlin et al. 2018), C-Tran aims
to capture semantic information by predicting the unknown
labels on the images with the help of known labels. However,
in FL settings, label co-occurrence information might dif-
fer across distinct clients. As confirmed later by our experi-
ments, applying standard FL techniques with C-Tran might
not be preferable.

Federated Learning Intuitively, one can utilize central-
ized multi-label learning models in FL schemes. That is, one
can view each local client as a multi-label classification task
and perform aggregation on the server side. However, ex-
isting centralized approaches require interaction with train-
ing data to capture a global view of the label relationships,
which is infeasible under FL scenarios. For example in
Fig.1, one client primarily captures images of drinks and
glass, while the other client mainly takes pictures of land-
scapes and plants. Thus, the former client’s model learns a
high correlation between “liquid” and “glass”, whereas the
latter client’s model learns a high correlation between “lig-
uid” and “plant”. However, aggregating these models on the
server side could lead to confusion between these categories
(i.e., “liquid”, “glass”, and “plant”) for the global model, re-
sulting in a degradation of performance.

To the best of our knowledge, recent FL. works did not
address multi-label learning tasks, and thus the above is-
sue would limit the model performances. As discussed
in the following section, we propose a Transformer-based
model while tackling the inherent label distribution differ-
ences between clients. Compared to popular FL techniques
like FedAvg, our method achieves impressive results on a
large-scale dataset for multi-label FL (i.e., FLAIR (Song,
Grangvist, and Talwar 2022)).

3 Proposed Method
3.1 Problem Formulation and Setup

In this work, we assume that K clients would be involved
in the federated learning process in each communication
round, and local private datasets are available for clients
D = {D1,D,,...,Dg} during training. For each client, it
can be viewed as solving a standard multi-label image classi-
fication task. To be more specific, given an image x with the
corresponding label y = [y1, ..., yc|, where C' is the number
of classes, y; = 1 indicates ¢-th class is present in the image,
and y; = 0 is not present, then the local clients attempt to
predict the existence of each category of the image. The goal
is to obtain a global aggregated model handling multi-label
classification on FL that solves the objective

| Di|

1W£k(w),

w* = arg min E?Z )
w

In multi-label FL, each client and server share the same
label space with a total of C' categories. However, label dis-
tributions might differ across different clients. Thus, based
on a recent SOTA centralized multi-label learning model of
C-Tran (Lanchantin et al. 2021), our goal is to tackle the
multi-label FL task.
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Figure 2: Overview of FedLGT. Given an image with multi-labels to predict, the global model from each communication round
updates the local model with Client-Aware Masked Label Embedding (CA-MLE), which exploits partial label correlation
observed at each client. In order to properly align local models for multi-label FL, universal label embeddings (ULE) are

utilized in FedLGT. (Best viewed in color.)

3.2 A Brief Review for C-tran

C-Tran (Lanchantin et al. 2021) is a centralized
Transformer-based (Vaswani et al. 2017) multi-label
image classification framework, which is designed to ob-
serve image features and label correlations simultaneously.
In C-Tran, the image features are extracted by ResNet (He
et al. 2016), while the labels are described by both label L
and state S embeddings. The label embeddings are defined
as L = {l1,ls,...,lc}, where each [, € R? represents c-th
class labels (d denotes the embedding dimension). On the
other hand, a set of state embeddings S = {s1, s2,..., Sc}
(with each s, € R%) are viewed as tokens, indicating
the presence of the corresponding labels of unknown,
positive, and negative. Note the encoded token value for the
associated state embeddings is —1, 1, and 0, respectively.
Also, only the unknown state would contribute the loss to
the model during training. With label and state embeddings,
C-Tran proposes a training pipeline of Label Mask Training
(LMT) that randomly masks partial amounts of labels and
has the model perform prediction, implicitly exploiting
label correlations. Specifically, the state embeddings would
be added to the aforementioned label embeddings to form
the masked label embeddings [, for LMT:

le =1lc+ se, 2
where s, is one of the states among unknown, positive, neg-
ative. Thus, the masked label embeddings can be formulated
as L = {l1,ls,...,lc} in the LMT process.

As shown in Fig. 2, the image features Z extracted by the
vision backbone (e.g., ResNet (He et al. 2016)) would be
concatenated with the masked label embeddings L, and sent
into the transformer model. Thus, one has

Y =w(xz, L), (€)]
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where x denotes the input image, L represents the masked
label embeddings, and Y is the predicted logit (w denotes
the network model). However, as noted in Section 2, C-Tran
cannot easily preserve label co-occurrence across different
clients in FL settings. Thus, how to extend C-Tran for FL.
multi-label classification remains a challenging task.

3.3 Federated Language-Guided Transformer

In multi-label FL, we aim to learn a global model that gen-
eralizes to different clients with potential label distribution
skews and diverse label correlations. Instead of simply per-
forming model aggregation (like FedAvg) with pure visual
input which might lead to degraded multi-label classification
performances, we extend C-Tran and propose a novel learn-
ing scheme of Federated Language-Guided Transformer
(FedLGT). As depicted in Fig. 2, we introduce model updat-
ing and feature embedding learning schemes for FedLGT, as
presented below.

Client-Aware Masked Label Embedding To train global
and client models in multi-label FL settings, how to tackle
the domain shift or label skews across clients while jointly
exploiting inherent label co-occurrence information is a
challenging problem. At the ¢-th training round, each client
applies the global model w! to output the prediction vector
P = {p1,pa,...,pc}, where each of p. € [0, 1] represents
a probability indicating the presence of the associated label.
However, since the global model would not generalize to
each client during training rounds, one would expect some
class labels to be with lower confidence (i.e., p.. is around 0.5
instead of being close to 1 or 0). In such cases, a client-aware
training strategy is necessary for updating the associate local
model and calibrating the state embeddings s..

To address this problem, we propose|Clieni-anaremasked
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Figure 3: Details of CA-MLE and ULE. With the input im-
age x and label y, CA-MLE generates the prediction by
global model w® and calibrates the state embeddings, while
ULE advances the pre-trained label embeddings from CLIP
for model aggregation purposes.

as depicted in Fig. 3 for local
model updating. In CA-MLE, we would modify the orig-
inal state embeddings of c-th class to be unknown if the
D 1s uncertain, otherwise, the state embeddings remain un-
changed. More precisely, the calibrated state embeddings
S' = {s], s, ..., s } are defined as
!

c

unknown, T—¢c<p.<T+¢

otherwise

) “
SC’
where 7 denotes the threshold (typically 0.5 as set in most
multi-label works (Lanchantin et al. 2021; Liu et al. 2021))
to determine the presence of the corresponding class, and
¢ as the adaptable margin to describe the uncertainty. Note
that only the unknown state would contribute losses to the
training. Namely, if the probability lies in the interval, it in-
dicates that the c-th class is uncertain for the global model
w?, and such a class is enforced to be further learned during
that training round.

With calibrated state embeddings mentioned above, we
view these embeddings as the masks to indicate which parts
should be learned more during local training. We would not
perform training by randomly generated masks as Eq. (2)
stated. Instead, we utilize these calibrated state embeddings
s, to each of the label embeddings to form the masked label
embeddings to enhance the local training. Through the use
of this calibration technique, we can harness the knowledge
contained within the global model through state embeddings
to guide the local training. Namely, it allows the local clients
to focus more on those classes that are still challenging for
the global model when local training, resulting in learning a
better generalized and robust model after FL aggregation.

Universal Label Embedding In federated multi-label
classification, the aggregated global model would not prop-
erly capture label correlation across different clients, since it
does not have access to data for each client. Recall that, for
each client, the local models may only capture the partial
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Algorithm 1: Training of FedLGT

Input: Communication rounds 7', local epochs E,
number of all clients K, the fraction of active
client in each round p, the initial model wY,
k-th client dataset Dy;

Output: The trained global model w!

Build universal label embedding L in Sec. 3.3
fort=1,2,....,T do

Sample R = [p - K| clients to train

for k = 1,2, ...Rin parallel do

L w! + LocalUpdate (w', L)

+ K D
t+1 2 | k |
return wt

A U AW N =

k= I\D\w

l

LocalUpdate (w', L)

9 fore=1,2,..., F do

0 | wh+—w

11 for (i, yr) € Dy do
12 P+ wt(xy, yx, L)

Produce L with P by CA-MLE in Sec. 3.3
Update w}, by Lpce

return w? L

view of label correlations. Since an aggregation step is com-
monly deployed in FL to update the global model, it would
be desirable to design a proper local model alignment mech-
anism, so that the inherent label co-occurrence information
observed at each client would be properly shared and aggre-
gated at the server.

To accomplish this, as depicted in Fig. 3, we propose
to deploy universal label embedding (ULE) across clients
in FedLGT. That is,

To be more specific, we build a
prompt “The photo contains [CLASS]” as the input of the
text encoder to generate the embedding for the associated
c-th class label [.. Such pre-trained/aligned label embed-
dings thus serve as the guidance during training of FedLGT,
ensuring the updates of local models are aligned with pre-
determined embedding space and thus favoring the subse-
quent model aggregation process.

3.4 Training of FedLGT

In FedLGT, we perform local model updates and global
model aggregation in one communication round to achieve
a federated learning process.

Local Model Update During the local model update, as
depicted in Figure 2, each client k£ would go through CA-
MLE with ULE to produce masked label embeddings. For

With these logits
from the global model, it can be served as guidance for the
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Metrics C-AP C-P C-R C-Fl O-AP O-P O-R O-F1
Centralized (upper bound)

ResNet 67.71 75.71 55.42 64.00 90.40 84.09 78.96 81.44
C-Tran 71.60 76.30 62.00 68.40 91.50 84.40 80.70 82.50
Federated

FedAvg 40.63 42.74 26.53 32.74 77.39 7835 56.31 65.53
FedC-Tran 56.00 49.40 38.20 43.10 88.10 83.10 72.50 77.40

Ours 60.90 67.80 46.50 55.10 88.70 84.00 75.90 79.70

Table 1: Comparisons of coarse-grained multi-label classifi-
cation task on FLAIR. Bold denotes the best result under the
FL setting.

local model in the training process.

us,
this allows the local model to focus more on those classes
during training. As for ULE, the label correlations would be
aligned according to fixed label embeddings across different
clients. After passing these components, we follow Eq. (2) to
perform element-wise addition of these embeddings to form
masked label embedding to serve as the label inputs of the
local model.

With masked label embedding, we leverage the self-
attention mechanism in the transformer block to capture the
relationships between the input image features and label cor-
relations. To be more specific, we concatenate the masked
label embeddings and image features extracted by the vi-
sion backbone (e.g., ResNet) as the input tokens of the trans-
former. Next, the output embeddings generated by the trans-
former are sent to the classifier (i.e., MLP head) to produce
the multi-label classification results (i.e., Y in Figure 2).

As for the loss function to update the local model for
client & (i.e., w} shown in Figure 2), we adopt binary cross-
entropy loss with our adjustment for masks, and only the
masked labels would be optimized during training, which is
formulated as:

Loce ==Y yelog(pe), (5)

sgis unknown
Vee(1,C]

Global Model Aggregation Once the local training is
done, the clients would upload their local models wy, to the
server and perform the aggregation step in FL. Specifically,
we utilize the vanilla FedAvg (McMahan et al. 2017) aggre-
gation process, and it can be derived as follows:
D

wh = Ef_lw’]'w};, ©)
As soon as the training of our framework is converged, the
trained aggregated global model is capable of performing
multi-label image classification tasks by setting all the state
embeddings to unknown for prediction.

With the above learning process, we are able to transfer
the knowledge of the global model to local clients, with in-
herent and partial label correlation properly shared and up-
dated. The pseudo-code of our proposed framework is de-
scribed in Algorithm 1. Once the training of FedLGT is com-
plete, we apply the learned model for testing.

Metrics C-AP C-P C-R CFl O-AP O-P O-R O-F1

Centralized (upper bound)
ResNet 20.26 3297 1092 1640 47.95 68.73 30.04 41.81
C-Tran 27.50 33.10 13.30 18.90 54.20 71.00 34.70 46.60

Federated
FedAvg 2.03 1.99 040 0.66 27.31 65.47 10.50 18.10
FedC-Tran 3.30 3.00 1.00 1.50 36.70 69.10 20.60 31.70

Ours 10.60 6.50 1.40 2.30 42.20 69.80 21.90 33.40

Table 2: Comparisons of fine-grained multi-label classifica-
tion task on FLAIR. Bold denotes the best result under the
FL setting.

4 Experiments
4.1 Experimental Setup

Datasets To demonstrate the effectiveness of our pro-
posed learning framework, we conduct extensive evaluations
on various benchmark datasets, including FLAIR (Song,
Grangvist, and Talwar 2022), MS-COCO (Lin et al. 2014),
and PASCAL VOC (Everingham et al. 2015). Specifically,
we primarily evaluate our method on the recently intro-
duced multi-label FL dataset, FLAIR. FLAIR is a large-
scale multi-label FL dataset, which contains a wide vari-
ety of photos collected from real users on Flickr. FLAIR
provides real-user data partitions with each input image in
256 x 256 pixels. Thus, FLAIR naturally captures vari-
ous non-IID characteristics, including quantity skew (i.e.,
users have different numbers of samples), label distribu-
tion skew, and domain shift, leading to a more challeng-
ing scenario for FL. FLAIR is defined in a two-level hier-
archy, one task called coarse-grained with 17 categories,
the other called fine-grained with 1,628 categories. Besides,
we also validate the performance of our method on central-
ized datasets partitioned artificially for FL, including MS-
COCO and PASCAL VOC. To the best of our knowledge,
these datasets have not been explored before in the con-
text of multi-label FL. MS-COCO contains about 122,218
images containing common objects, and the standard multi-
label formulation covers 80 object class annotations for each
image. Moreover, the images in PASCAL VOC include mul-
tiple labels, corresponding to 20 object categories, which is
a relatively easier task than FLAIR and MS-COCO.

Implementation Details We use ResNet-18 (He et al.
2016) as our vision backbone across all datasets mentioned
above. For the universal label embeddings, we build a
prompt “The photo contains [CLASS]” as the input of the
text encoder for CLIP (Radford et al. 2021), whereas for
the state embeddings, we build the prompt with one of the
‘positive” or ‘negative” for CLIP, and “unknown” is fixed
with all zeros. Note that for FLAIR coarse-grained level
since the categories are abstract, we build the prompts in
two ways via the fine-grained level information. One collects
the fine-grained labels for each coarse-grained label to build
the prompts (i.e., [CLASS] parts), and the other builds all
embeddings of the fine-grained labels, and for each coarse-
grained label, taking average on corresponding fine-grained
to build the coarse level embeddings. As for CA-MLE, we
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Metrics C-AP C-P C-R C-FI O-AP O-P O-R O-F1
MS-COCO

FedAvg 69.20 71.00 60.30 65.20 77.80 75.80 65.30 70.20
FedC-Tran 76.70 76.00 67.10 71.20 83.90 79.40 71.60 75.30
Ours 78.30 77.20 70.00 73.40 84.70 80.20 73.70 76.80

PASCAL VOC

FedAvg 87.50 87.90 73.30 79.90 91.80 91.70 78.30 84.50
FedC-Tran 89.60 88.20 79.60 83.60 93.70 91.70 83.40 87.30
Ours 90.80 88.80 82.50 85.50 94.10 91.80 85.30 88.40

Table 3: Comparisons on MS-COCO and PASCAL VOC for
our FedLGT with FL baselines.

set the threshold 7 to 0.5 and the uncertainty margin € is
0.02. For each round of local training, we train 5 epochs
using the Adam (Kingma and Ba 2014) optimizer with a
learning rate of 0.0001, and the batch size is set to 16. For
the detail settings about FL, the communication round 7" is
set to 50, and the fraction of active clients in each round
is designed to achieve a level of participation equivalent to
50 clients, thus ensuring the data distribution is represen-
tative of the overall population. Besides, we observed that
the statistics of FLAIR (Song, Granqvist, and Talwar 2022)
suggest that the number of images across different users may
have significant variations, leading to severe quantity skew
issues. Thus, we follow some previous FL works (Li et al.
2019; Cho, Wang, and Joshi 2020) focusing on non-uniform
client sampling to handle this issue. The concept is sampling
clients at random such that the probability is the correspond-
ing fraction of data at that client. With the help of this sam-
pling scheme, we could guarantee our client quality, avoid-
ing biased to very tiny local client datasets. Due to page lim-
itations, we report the results with different sampling strate-
gies in the supplementary materials. For all experiments, we
implement our model by PyTorch and conduct training on a
single NVIDIA RTX 3090Ti GPU with 24GB memory.

4.2 Performance Results and Analysis

As for the evaluation metrics, we follow the convention of
works on multi-label image classification (Lanchantin et al.
2021; Ridnik et al. 2021) and use the metrics of per-class (C)
and overall (O) average precision (i.e., C-AP and O-AP),
precision (C-P, O-P), recall (C-R, O-R), F1 scores (C-F1,
O-F1), with details provided in the supplementary materi-
als. For the coarse-grained task in FLAIR, we first utilize
C-Tran (Lanchantin et al. 2021) to conduct centralized learn-
ing experiments and compare the centralized results to pure
ResNet-18 baseline. As shown in Table 1, the centralized C-
Tran improves the performance. However, as we transfer the
C-Tran directly to FL (i.e., FedC-Tran across all our tables),
it surpasses the baseline FedAvg though. The gap between
FedC-Tran and centralized is still present and has room for
improvement. Hence, our proposed method could perform
favorably against FedC-Tran (e.g., 4.9% on C-AP, 12% on
C-F1, etc.). Similarly, as for the fine-grained task shown
in Table 2, the centralized C-Tran still overcomes ResNet-18
baseline. But, FedC-Tran has a huge performance drop when
transferred to FL compared to coarse-grained ones, which
may be caused by the corrupted label relationships due to the

Metrics C-AP C-FI O-AP O-F1
FedC-Tran 56.00 43.10 88.10 77.90
FedC-Tran + CA-MLE 56.10 45.00 88.30 78.40
FedC-Tran + ULE 59.70 5490 8830 78.90
Ours 60.90 55.10 88.70 79.70

Table 4: Abaltion studies of our FedLGT using coarse-
grained task on FLAIR. Note that CA-MLE means client-
aware masked label embedding, while ULE is universal la-
bel embedding. Bold denotes the best result.

aggregation step in FL. Thus, our method could avoid cor-
rupt label relationships, leading to much more performance
boosting (e.g., over 3x on C-AP, 1.5x on C-FI, etc.). Be-
sides, as Table 3 presented, we also verify our effectiveness
on extra datasets designed for centralized multi-label prob-
lems (MS-COCO, PASCAL VOC), and still achieve favor-
able performance over FedC-Tran baseline.

4.3 Ablation Studies

As reported in Table 4, we first perform ablation studies
about the two components in our method. From “FedC-Tran
+ CA-MLE” of Table 4 (i.e., only using the client-aware
masked label embedding), we observe that the improvement
is not obvious (e.g., 0.1% on C-AP) compared to FedC-
Tran baseline, which may be caused by the corrupted la-
bel correlations. Next, from “FedC-Tran + ULE” of Table 4
(i.e., only using universal label embedding), the improve-
ment (e.g., 3.7% on C-AP) becomes more significant since
the label embeddings are not corrupted by aggregation step.
Thus, it can be seen the importance of ULE for the robust-
ness and semantically label correlations. In the last row, our
proposed method including the two aforementioned compo-
nents is able to achieve satisfactory performance compared
with the baselines (e.g., 4.9% on C-AP), and highlights the
importance of ULE with the further improvements intro-
duced by CA-MLE. Due to page limitation, additional ab-
lation studies on the fine-grained FLAIR are provided in the
supplementary materials.

5 Conclusion

In this paper, we tackle the challenging problems of multi-
label FL. With the proposed framework of FedLGT, we are
able to exploit local label correlation via learning client-
aware masked label embedding. With universal label embed-
ding derived from pre-trained vision and language model,
the alignment of locally learned models can be performed
in the same embedding space, allowing aggregation of such
models for improved performance. We verified our proposed
methods by conducting extensive experiments on the chal-
lenging dataset FLAIR as well as benchmarks of MS-COCO
and PASCAL VOC. Our experiments confirmed the robust-
ness and effectiveness of our proposed learning scheme for
multi-label FL.
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