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Abstract

Federated learning enables multiple parties to collab-

oratively train a machine learning model without commu-

nicating their local data. A key challenge in federated

learning is to handle the heterogeneity of local data dis-

tribution across parties. Although many studies have been

proposed to address this challenge, we find that they fail

to achieve high performance in image datasets with deep

learning models. In this paper, we propose MOON: model-

contrastive federated learning. MOON is a simple and

effective federated learning framework. The key idea of

MOON is to utilize the similarity between model represen-

tations to correct the local training of individual parties,

i.e., conducting contrastive learning in model-level. Our

extensive experiments show that MOON significantly out-

performs the other state-of-the-art federated learning algo-

rithms on various image classification tasks.

1. Introduction

Deep learning is data hungry. Model training can benefit

a lot from a large and representative dataset (e.g., ImageNet

[6] and COCO [31]). However, data are usually dispersed

among different parties in practice (e.g., mobile devices and

companies). Due to the increasing privacy concerns and

data protection regulations [40], parties cannot send their

private data to a centralized server to train a model.

To address the above challenge, federated learning [20,

44, 27, 26] enables multiple parties to jointly learn a ma-

chine learning model without exchanging their local data.

A popular federated learning algorithm is FedAvg [34]. In

each round of FedAvg, the updated local models of the par-

ties are transferred to the server, which further aggregates

the local models to update the global model. The raw data is

not exchanged during the learning process. Federated learn-

ing has emerged as an important machine learning area and

attracted many research interests [34, 28, 22, 25, 41, 5, 16,

2, 11]. Moreover, it has been applied in many applications

such as medical imaging [21, 23], object detection [32], and

landmark classification [15].

A key challenge in federated learning is the hetero-

geneity of data distribution on different parties [20]. The

data can be non-identically distributed among the parties in

many real-world applications, which can degrade the per-

formance of federated learning [22, 29, 24]. When each

party updates its local model, its local objective may be

far from the global objective. Thus, the averaged global

model is away from the global optima. There have been

some studies trying to address the non-IID issue in the lo-

cal training phase [28, 22]. FedProx [28] directly limits

the local updates by ℓ2-norm distance, while SCAFFOLD

[22] corrects the local updates via variance reduction [19].

However, as we show in the experiments (see Section 4),

these approaches fail to achieve good performance on im-

age datasets with deep learning models, which can be as

bad as FedAvg.

In this work, we address the non-IID issue from a novel

perspective based on an intuitive observation: the global

model trained on a whole dataset is able to learn a bet-

ter representation than the local model trained on a skewed

subset. Specifically, we propose model-contrastive learn-

ing (MOON), which corrects the local updates by max-

imizing the agreement of representation learned by the

current local model and the representation learned by the

global model. Unlike the traditional contrastive learning

approaches [3, 4, 12, 35], which achieve state-of-the-art re-

sults on learning visual representations by comparing the

representations of different images, MOON conducts con-

trastive learning in model-level by comparing the represen-

tations learned by different models. Overall, MOON is

a simple and effective federated learning framework, and

addresses the non-IID data issue with the novel design of

model-based contrastive learning.

We conduct extensive experiments to evaluate the ef-

fectiveness of MOON. MOON significantly outperforms

the other state-of-the-art federated learning algorithms [34,

28, 22] on various image classification datasets including

CIFAR-10, CIFAR-100, and Tiny-Imagenet. With only

lightweight modifications to FedAvg, MOON outperforms

existing approaches by at least 2% accuracy in most cases.

Moreover, the improvement of MOON is very significant
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Figure 1. The FedAvg framework. In this paper, we focus on the

second step, i.e., the local training phase.

on some settings. For example, on CIFAR-100 dataset with

100 parties, MOON achieves 61.8% top-1 accuracy, while

the best top-1 accuracy of existing studies is 55%.

2. Background and Related Work

2.1. Federated Learning

FedAvg [34] has been a de facto approach for federated

learning. The framework of FedAvg is shown in Figure 1.

There are four steps in each round of FedAvg. First, the

server sends a global model to the parties. Second, the par-

ties perform stochastic gradient descent (SGD) to update

their models locally. Third, the local models are sent to a

central server. Last, the server averages the model weights

to produce a global model for the training of the next round.

There have been quite some studies trying to improve

FedAvg on non-IID data. Those studies can be divided into

two categories: improvement on local training (i.e., step 2

of Figure 1) and on aggregation (i.e., step 4 of Figure 1).

This study belongs to the first category.

As for studies on improving local training, FedProx [28]

introduces a proximal term into the objective during local

training. The proximal term is computed based on the ℓ2-

norm distance between the current global model and the

local model. Thus, the local model update is limited by

the proximal term during the local training. SCAFFOLD

[22] corrects the local updates by introducing control vari-

ates. Like the training model, the control variates are also

updated by each party during local training. The differ-

ence between the local control variate and the global con-

trol variate is used to correct the gradients in local train-

ing. However, FedProx shows experiments on MNIST and

EMNIST only with multinomial logistic regression, while

SCAFFOLD only shows experiments on EMNIST with lo-

gistic regression and 2-layer fully connected layer. The ef-

fectiveness of FedProx and SCAFFOLD on image datasets

with deep learning models has not been well explored. As

shown in our experiments, those studies have little or even

no advantage over FedAvg, which motivates this study for

a new approach of handling non-IID image datasets with

deep learning models. We also notice that there are other

related contemporary work [1, 30, 43] when preparing this

paper. We leave the comparison between MOON and these

contemporary work as future studies.

As for studies on improving the aggregation phase,

FedMA [41] utilizes Bayesian non-parametric methods to

match and average weights in a layer-wise manner. Fe-

dAvgM [14] applies momentum when updating the global

model on the server. Another recent study, FedNova [42],

normalizes the local updates before averaging. Our study

is orthogonal to them and potentially can be combined with

these techniques as we work on the local training phase.

Another research direction is personalized federated

learning [8, 7, 10, 47, 17], which tries to learn personal-

ized local models for each party. In this paper, we study

the typical federated learning, which tries to learn a single

global model for all parties.

2.2. Contrastive Learning

Self-supervised learning [18, 9, 3, 4, 12, 35] is a recent

hot research direction, which tries to learn good data repre-

sentations from unlabeled data. Among those studies, con-

trastive learning approaches [3, 4, 12, 35] achieve state-of-

the-art results on learning visual representations. The key

idea of contrastive learning is to reduce the distance be-

tween the representations of different augmented views of

the same image (i.e., positive pairs), and increase the dis-

tance between the representations of augmented views of

different images (i.e., negative pairs).

A typical contrastive learning framework is SimCLR [3].

Given an image x, SimCLR first creates two correlated

views of this image using different data augmentation op-

erators, denoted xi and xj . A base encoder f(·) and a pro-

jection head g(·) are trained to extract the representation

vectors and map the representations to a latent space, re-

spectively. Then, a contrastive loss (i.e., NT-Xent [38]) is

applied on the projected vector g(f(·)), which tries to max-

imize agreement between differently augmented views of

the same image. Specifically, given 2N augmented views

and a pair of view xi and xj of same image, the contrastive

loss for this pair is defined as

li,j = − log
exp(sim(xi, xj)/τ)∑2N

k=1 I[k 6=i] exp(sim(xi, xk)/τ)
(1)

where sim(·, ·) is a cosine similarity function and τ de-

10714



notes a temperature parameter. The final loss is computed

by summing the contrastive loss of all pairs of the same im-

age in a mini-batch.

Besides SimCLR, there are also other contrastive learn-

ing frameworks such as CPC [36], CMC [39] and MoCo

[12]. We choose SimCLR for its simplicity and effective-

ness in many computer vision tasks. Still, the basic idea of

contrastive learning is similar among these studies: the rep-

resentations obtained from different images should be far

from each other and the representations obtained from the

same image should be related to each other. The idea is

intuitive and has been shown to be effective.

There is one recent study [46] that combines federated

learning with contrastive learning. They focus on the un-

supervised learning setting. Like SimCLR, they use con-

trastive loss to compare the representations of different im-

ages. In this paper, we focus on the supervised learning

setting and propose model-contrastive learning to compare

representations learned by different models.

3. Model-Contrastive Federated Learning

3.1. Problem Statement

Suppose there are N parties, denoted P1, ..., PN . Party

Pi has a local dataset Di. Our goal is to learn a machine

learning model w over the dataset D ,
⋃

i∈[N ]D
i with

the help of a central server, while the raw data are not ex-

changed. The objective is to solve

argmin
w

L(w) =

N∑

i=1

|Di|

|D|
Li(w), (2)

where Li(w) = E(x,y)∼Di [ℓi(w; (x, y))] is the empirical

loss of Pi.

3.2. Motivation

MOON is based on an intuitive idea: the model trained

on the whole dataset is able to extract a better feature rep-

resentation than the model trained on a skewed subset. For

example, given a model trained on dog and cat images, we

cannot expect the features learned by the model to distin-

guish birds and frogs which never exist during training.

To further verify this intuition, we conduct a simple ex-

periment on CIFAR-10. Specifically, we first train a CNN

model (see Section 4.1 for the detailed structure) on CIFAR-

10. We use t-SNE [33] to visualize the hidden vectors of

images from the test dataset as shown in Figure 2a. Then,

we partition the dataset into 10 subsets in an unbalanced

way (see Section 4.1 for the partition strategy) and train a

CNN model on each subset. Figure 2b shows the t-SNE

visualization of a randomly selected model. Apparently,

the model trained on the subset learns poor features. The

feature representations of most classes are even mixed and

(a) global model (b) local model

(c) FedAvg global model (d) FedAvg local model

Figure 2. T-SNE visualizations of hidden vectors on CIFAR-10.

cannot be distinguished. Then, we run FedAvg algorithm

on 10 subsets and show the representation learned by the

global model in Figure 2c and the representation learned by

a selected local model (trained based on the global model)

in Figure 2d. We can observe that the points with the same

class are more divergent in Figure 2d compared with Figure

2c (e.g., see class 9). The local training phase even leads

the model to learn a worse representation due to the skewed

local data distribution. This further verifies that the global

model should be able to learn a better feature representation

than the local model, and there is a drift in the local up-

dates. Therefore, under non-IID data scenarios, we should

control the drift and bridge the gap between the representa-

tions learned by the local model and the global model.

3.3. Method

Based on the above intuition, we propose MOON.

MOON is designed as a simple and effective approach

based on FedAvg, only introducing lightweight but novel

modifications in the local training phase. Since there is al-

ways drift in local training and the global model learns a

better representation than the local model, MOON aims to

decrease the distance between the representation learned by

the local model and the representation learned by the global

model, and increase the distance between the representation

learned by the local model and the representation learned by

the previous local model. We achieve this from the inspira-

tion of contrastive learning, which is now mainly used to

learn visual representations. In the following, we present

the network architecture, the local learning objective and

the learning procedure. At last, we discuss the relation to

contrastive learning.
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3.3.1 Network Architecture

The network has three components: a base encoder, a pro-

jection head, and an output layer. The base encoder is used

to extract representation vectors from inputs. Like [3], an

additional projection head is introduced to map the repre-

sentation to a space with a fixed dimension. Last, as we

study on the supervised setting, the output layer is used to

produce predicted values for each class. For ease of pre-

sentation, with model weight w, we use Fw(·) to denote the

whole network and Rw(·) to denote the network before the

output layer (i.e., Rw(x) is the mapped representation vec-

tor of input x).

3.3.2 Local Objective

As shown in Figure 3, our local loss consists two parts. The

first part is a typical loss term (e.g., cross-entropy loss) in

supervised learning denoted as ℓsup. The second part is our

proposed model-contrastive loss term denoted as ℓcon.

Suppose party Pi is conducting the local training. It re-

ceives the global model wt from the server and updates the

model to wt
i in the local training phase. For every input x,

we extract the representation of x from the global model wt

(i.e., zglob = Rwt(x)), the representation of x from the lo-

cal model of last round wt−1
i (i.e., zprev = Rwt−1

i
(x)), and

the representation of x from the local model being updated

wt
i (i.e., z = Rwt

i
(x)). Since the global model should be

able to extract better representations, our goal is to decrease

the distance between z and zglob, and increase the distance

between z and zprev . Similar to NT-Xent loss [38], we de-

fine model-contrastive loss as

ℓcon = − log
exp(sim(z, zglob)/τ)

exp(sim(z, zglob)/τ) + exp(sim(z, zprev)/τ)
(3)

where τ denotes a temperature parameter. The loss of an

input (x, y) is computed by

ℓ = ℓsup(w
t
i ; (x, y)) + µℓcon(w

t
i ;w

t−1
i ;wt;x), (4)

where µ is a hyper-parameter to control the weight of

model-contrastive loss. The local objective is to minimize

min
wt

i

E(x,y)∼Di [ℓsup(w
t
i ; (x, y)) +µℓcon(w

t
i ;w

t−1
i ;wt;x)].

(5)

The overall federated learning algorithm is shown in Al-

gorithm 1. In each round, the server sends the global model

to the parties, receives the local model from the parties, and

updates the global model using weighted averaging. In local

training, each party uses stochastic gradient descent to up-

date the global model with its local data, while the objective

is defined in Eq. (5).

Figure 3. The local loss in MOON.

Algorithm 1: The MOON framework

Input: number of communication rounds T ,

number of parties N , number of local

epochs E, temperature τ , learning rate η,

hyper-parameter µ
Output: The final model wT

1 Server executes:

2 initialize w0

3 for t = 0, 1, ..., T − 1 do

4 for i = 1, 2, ..., N in parallel do

5 send the global model wt to Pi

6 wt
i ← PartyLocalTraining(i, wt)

7 wt+1 ←
∑N

k=1
|Di|
|D| w

t
k

8 return wT

9 PartyLocalTraining(i, wt):

10 wt
i ← wt

11 for epoch i = 1, 2, ..., E do

12 for each batch b = {x, y} of Di do

13 ℓsup ← CrossEntropyLoss(Fwt
i
(x), y)

14 z ← Rwt
i
(x)

15 zglob ← Rwt(x)
16 zprev ← Rwt−1

i
(x)

17 ℓcon ←

− log
exp(sim(z,zglob)/τ)

exp(sim(z,zglob)/τ)+exp(sim(z,zprev)/τ)

18 ℓ← ℓsup + µℓcon
19 wt

i ← wt
i − η∇ℓ

20 return wt
i to server

For simplicity, we describe MOON without applying

sampling technique in Algorithm 1. MOON is still applica-

ble when only a sample set of parties participate in federated
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Figure 4. The comparison between SimCLR and MOON. Here x

denotes an image, w denotes a model, and R denotes the function

to compute representation. SimCLR maximizes the agreement be-

tween representations of different views of the same image, while

MOON maximizes the agreement between representations of the

local model and the global model on the mini-batches.

learning each round. Like FedAvg, each party maintains its

local model, which will be replaced by the global model and

updated only if the party is selected to participate in a round.

MOON only needs the latest local model that the party has,

even though it may not be updated in round (t − 1) (e.g.,

wt−1
i = wt−2

i ).

An notable thing is that considering an ideal case where

the local model is good enough and learns (almost) the same

representation as the global model (i.e., zglob = zprev),

the model-contrastive loss will be a constant (i.e., − log 1
2 ).

Thus, MOON will produce the same result as FedAvg, since

there is no heterogeneity issue. In this sense, our approach

is robust regardless of different amount of drifts.

3.4. Comparisons with Contrastive Learning

A comparison between MOON and SimCLR is shown

in Figure 4. The model-contrastive loss compares represen-

tations learned by different models, while the contrastive

loss compares representations of different images. We also

highlight the key difference between MOON and traditional

contrastive learning: MOON is currently for supervised

learning in a federated setting while contrastive learning is

for unsupervised learning in a centralized setting. Draw-

ing the inspirations from contrastive learning, MOON is a

new learning methodology in handling non-IID data distri-

butions among parties in federated learning.

4. Experiments

4.1. Experimental Setup

We compare MOON with three state-of-the-art ap-

proaches including (1) FedAvg [34], (2) FedProx [28], and

(3) SCAFFOLD [22]. We also compare a baseline approach

named SOLO, where each party trains a model with its lo-

cal data without federated learning. We conduct experi-

ments on three datasets including CIFAR-10, CIFAR-100,

and Tiny-Imagenet1 (100,000 images with 200 classes).

Moreover, we try two different network architectures. For

CIFAR-10, we use a CNN network as the base encoder,

which has two 5x5 convolution layers followed by 2x2 max

pooling (the first with 6 channels and the second with 16

channels) and two fully connected layers with ReLU activa-

tion (the first with 120 units and the second with 84 units).

For CIFAR-100 and Tiny-Imagenet, we use ResNet-50 [13]

as the base encoder. For all datasets, like [3], we use a 2-

layer MLP as the projection head. The output dimension

of the projection head is set to 256 by default. Note that

all baselines use the same network architecture as MOON

(including the projection head) for fair comparison.

We use PyTorch [37] to implement MOON and the other

baselines. The code is publicly available2. We use the SGD

optimizer with a learning rate 0.01 for all approaches. The

SGD weight decay is set to 0.00001 and the SGD momen-

tum is set to 0.9. The batch size is set to 64. The num-

ber of local epochs is set to 300 for SOLO. The number

of local epochs is set to 10 for all federated learning ap-

proaches unless explicitly specified. The number of com-

munication rounds is set to 100 for CIFAR-10/100 and 20

for Tiny-ImageNet, where all federated learning approaches

have little or no accuracy gain with more communications.

For MOON, we set the temperature parameter to 0.5 by de-

fault like [3].

Like previous studies [45, 41], we use Dirichlet distri-

bution to generate the non-IID data partition among par-

ties. Specifically, we sample pk ∼ DirN (β) and allocate a

pk,j proportion of the instances of class k to party j, where

Dir(β) is the Dirichlet distribution with a concentration

parameter β (0.5 by default). With the above partitioning

strategy, each party can have relatively few (even no) data

samples in some classes. We set the number of parties to

10 by default. The data distributions among parties in de-

fault settings are shown in Figure 5. For more experimental

results, please refer to Appendix.

4.2. Accuracy Comparison

For MOON, we tune µ from {0.1, 1, 5, 10} and report the

best result. The best µ of MOON for CIFAR-10, CIFAR-

100, and Tiny-Imagenet are 5, 1, and 1, respectively. Note

that FedProx also has a hyper-parameter µ to control the

weight of its proximal term (i.e., LFedProx = ℓFedAvg +
µℓprox). For FedProx, we tune µ from {0.001, 0.01, 0.1, 1}
(the range is also used in the previous paper [28]) and re-

port the best result. The best µ of FedProx for CIFAR-10,

CIFAR-100, and Tiny-Imagenet are 0.01, 0.001, and 0.001,

respectively. Unless explicitly specified, we use these µ set-

tings for all the remaining experiments.

Table 1 shows the top-1 test accuracy of all approaches

1https://www.kaggle.com/c/tiny-imagenet
2https://github.com/QinbinLi/MOON
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Figure 5. The data distribution of each party using non-IID data partition. The color bar denotes the number of data samples. Each rectangle

represents the number of data samples of a specific class in a party.

Table 1. The top-1 accuracy of MOON and the other baselines on

test datasets. For MOON, FedAvg, FedProx, and SCAFFOLD,

we run three trials and report the mean and standard derivation.

For SOLO, we report the mean and standard derivation among all

parties.

Method CIFAR-10 CIFAR-100 Tiny-Imagenet

MOON 69.1%±0.4% 67.5%±0.4% 25.1%±0.1%

FedAvg 66.3%±0.5% 64.5% ±0.4% 23.0%±0.1%

FedProx 66.9%±0.2% 64.6%±0.2% 23.2%±0.2%

SCAFFOLD 66.6%±0.2% 52.5% ±0.3% 16.0%±0.2%

SOLO 46.3% ±5.1% 22.3%±1.0% 8.6%±0.4%

with the above default setting. Under non-IID settings,

SOLO demonstrates much worse accuracy than other fed-

erated learning approaches. This demonstrates the benefits

of federated learning. Comparing different federated learn-

ing approaches, we can observe that MOON is consistently

the best approach among all tasks. It can outperform Fe-

dAvg by 2.6% accuracy on average of all tasks. For Fed-

Prox, its accuracy is very close to FedAvg. The proximal

term in FedProx has little influence in the training since µ is

small. However, when µ is not set to a very small value, the

convergence of FedProx is quite slow (see Section 4.3) and

the accuracy of FedProx is bad. For SCAFFOLD, it has

much worse accuracy on CIFAR-100 and Tiny-Imagenet

than other federated learning approaches.

4.3. Communication Efficiency

Figure 6 shows the accuracy in each round during train-

ing. As we can see, the model-contrastive loss term has lit-

tle influence on the convergence rate with best µ. The speed

of accuracy improvement in MOON is almost the same as

FedAvg at the beginning, while it can achieve a better accu-

racy later benefit from the model-contrastive loss. Since the

best µ values are generally small in FedProx, FedProx with

best µ is very close to FedAvg, especially on CIFAR-10 and

CIFAR-100. However, when setting µ = 1, FedProx be-

comes very slow due to the additional proximal term. This

Table 2. The number of rounds of different approaches to achieve

the same accuracy as running FedAvg for 100 rounds (CIFAR-

10/100) or 20 rounds (Tiny-Imagenet). The speedup of an ap-

proach is computed against FedAvg.

Method
CIFAR-10 CIFAR-100 Tiny-Imagenet

#rounds speedup #rounds speedup #rounds speedup

FedAvg 100 1× 100 1× 20 1×
FedProx 52 1.9× 75 1.3× 17 1.2×

SCAFFOLD 80 1.3× <1× <1×
MOON 27 3.7× 43 2.3× 11 1.8×

implies that limiting the ℓ2-norm distance between the local

model and the global model is not an effective solution. Our

model-contrastive loss can effectively increase the accuracy

without slowing down the convergence.

We show the number of communication rounds to

achieve the same accuracy as running FedAvg for 100

rounds on CIFAR-10/100 or 20 rounds on Tiny-Imagenet

in Table 2. We can observe that the number of communi-

cation rounds is significantly reduced in MOON. MOON

needs about half the number of communication rounds on

CIFAR-100 and Tiny-Imagenet compared with FedAvg.

On CIFAR-10, the speedup of MOON is even close to

4. MOON is much more communication-efficient than the

other approaches.

4.4. Number of Local Epochs

We study the effect of number of local epochs on the

accuracy of final model. The results are shown in Figure

7. When the number of local epochs is 1, the local update

is very small. Thus, the training is slow and the accuracy

is relatively low given the same number of communication

rounds. All approaches have a close accuracy (MOON is

still the best). When the number of local epochs becomes

too large, the accuracy of all approaches drops, which is due

to the drift of local updates, i.e., the local optima are not

consistent with the global optima. Nevertheless, MOON

clearly outperforms the other approaches. This further veri-

fies that MOON can effectively mitigate the negative effects
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Figure 6. The top-1 test accuracy in different number of communication rounds. For FedProx, we report both the accuracy with best µ and

the accuracy with µ = 1.
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Figure 7. The top-1 test accuracy with different number of local epochs. For MOON and FedProx, µ is set to the best µ from Section 4.2

for all numbers of local epochs. The accuracy of SCAFFOLD is quite bad when number of local epochs is set to 1 (45.3% on CIFAR10,

20.4% on CIFAR-100, 2.6% on Tiny-Imagenet). The accuracy of FedProx on Tiny-Imagenet with one local epoch is 1.2%.

of the drift by too many local updates.

4.5. Scalability

To show the scalability of MOON, we try a larger num-

ber of parties on CIFAR-100. Specifically, we try two set-

tings: (1) We partition the dataset into 50 parties and all par-

ties participate in federated learning in each round. (2) We

partition the dataset into 100 parties and randomly sample

20 parties to participate in federated learning in each round

(client sampling technique introduced in FedAvg [34]). The

results are shown in Table 3 and Figure 8. For MOON,

we show the results with µ = 1 (best µ from Section 4.2)

and µ = 10. For MOON (µ = 1), it outperforms the Fe-

dAvg and FedProx over 2% accuracy at 200 rounds with

50 parties and 3% accuracy at 500 rounds with 100 par-

ties. Moreover, for MOON (µ = 10), although the large

model-contrastive loss slows down the training at the begin-

ning as shown in Figure 8, MOON can outperform the other

approaches a lot with more communication rounds. Com-

pared with FedAvg and FedProx, MOON achieves about

about 7% higher accuracy at 200 rounds with 50 parties and

at 500 rounds with 100 parties. SCAFFOLD has a low ac-

curacy with a relatively large number of parties.

Table 3. The accuracy with 50 parties and 100 parties (sample frac-

tion=0.2) on CIFAR-100.

Method
#parties=50 #parties=100

100 rounds 200 rounds 250 rounds 500 rounds

MOON (µ=1) 54.7% 58.8% 54.5% 58.2%

MOON (µ=10) 58.2% 63.2% 56.9% 61.8%

FedAvg 51.9% 56.4% 51.0% 55.0%

FedProx 52.7% 56.6% 51.3% 54.6%

SCAFFOLD 35.8% 44.9% 37.4% 44.5%

SOLO 10%±0.9% 7.3%±0.6%

4.6. Heterogeneity

We study the effect of data heterogeneity by varying

the concentration parameter β of Dirichlet distribution on

CIFAR-100. For a smaller β, the partition will be more un-

balanced. The results are shown in Table 4. MOON always

achieves the best accuracy among three unbalanced levels.

When the unbalanced level decreases (i.e., β = 5), Fed-

Prox is worse than FedAvg, while MOON still outperforms

FedAvg with more than 2% accuracy. The experiments

demonstrate the effectiveness and robustness of MOON.

4.7. Loss Function

To maximize the agreement between the representation

learned by the global model and the representation learned
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Figure 8. The top-1 test accuracy on CIFAR-100 with 50/100 parties.

Table 4. The test accuracy with β from {0.1, 0.5, 5}.

Method β = 0.1 β = 0.5 β = 5

MOON 64.0% 67.5% 68.0%

FedAvg 62.5% 64.5% 65.7%

FedProx 62.9% 64.6% 64.9%

SCAFFOLD 47.3% 52.5% 55.0%

SOLO 15.9%±1.5% 22.3%±1% 26.6%±1.4%

by the local model, our model-contrastive loss ℓcon is pro-

posed inspired by NT-Xent loss [3]. Another intuitive op-

tion is to use ℓ2 regularization, and the local loss is

ℓ = ℓsup + µ ‖z − zglob‖2 (6)

Here we compare the approaches using different kinds

of loss functions to limit the representation: no additional

term (i.e., FedAvg: L = ℓsup), ℓ2 norm, and our model-

contrastive loss. The results are shown in Table 5. We can

observe that simply using ℓ2 norm even cannot improve the

accuracy compared with FedAvg on CIFAR-10. While us-

ing ℓ2 norm can improve the accuracy on CIFAR-100 and

Tiny-Imagenet, the accuracy is still lower than MOON. Our

model-contrastive loss is an effective way to constrain the

representations.

Our model-contrastive loss influences the local model

from two aspects. Firstly, the local model learns a close rep-

resentation to the global model. Secondly, the local model

also learns a better representation than the previous one un-

til the local model is good enough (i.e., z = zglob and ℓcon
becomes a constant).

5. Conclusion

Federated learning has become a promising approach

to resolve the pain of data silos in many domains such as

Table 5. The top-1 accuracy with different kinds of loss for the

second term of local objective. We tune µ from {0.001, 0.01 , 0.1,

1, 5, 10} for the ℓ2 norm approach and report the best accuracy.

second term CIFAR-10 CIFAR-100 Tiny-Imagenet

none (FedAvg) 66.3% 64.5% 23.0%

ℓ2 norm 65.8% 66.9% 24.0%

MOON 69.1% 67.5% 25.1%

medical imaging, object detection, and landmark classifi-

cation. Non-IID is a key challenge for the effectiveness of

federated learning. To improve the performance of feder-

ated deep learning models on non-IID datasets, we propose

model-contrastive learning (MOON), a simple and effective

approach for federated learning. MOON introduces a new

learning concept, i.e., contrastive learning in model-level.

Our extensive experiments show that MOON achieves sig-

nificant improvement over state-of-the-art approaches on

various image classification tasks. As MOON does not re-

quire the inputs to be images, it potentially can be applied

to non-vision problems.
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