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ABSTRACT

Continual Category Discovery (CCD) aims to leverage models trained on known
categories to automatically discover novel category concepts from continuously
arriving streams of unlabeled data, while retaining the ability to recognize pre-
viously known classes. Despite recent progress, existing methods often assume
that data across all stages are drawn from a single, stationary distribution—a
condition rarely satisfied in open-world scenarios. In this paper, we challenge
this stationary-distribution assumption by introducing the Open-World Continual
Category Discovery (OW-CCD) setting. We address this challenge with PRISM
(Progressive Robust dIscovery under StreaMing data), an adaptive continual dis-
covery framework consisting of three key components. First, inspired by spectral
properties, we develop a high-frequency-driven category separation technique that
exploits high-frequency components—preserving more global information—to
distinguish known from unknown categories. Second, for known categories, we
design a sparse assignment matching strategy, which performs proximal sparse
sample-to-label matching to assign reliable cluster labels to known-class sam-
ples. Finally, to better recognize novel categories, we propose an invariant knowl-
edge transfer module that enforces domain-invariant category relation consistency,
thereby facilitating robust knowledge transfer from known to unknown classes un-
der domain shifts. Extensive experiments on the SSB-C and DomainNet bench-
marks demonstrate that our method significantly outperforms state-of-the-art CCD
approaches, highlighting its effectiveness and superiority.

1 INTRODUCTION

Visual concepts in the real world are open-ended and continually evolving, far exceeding any prede-
fined category set. Although deep learning has achieved remarkable progress in visual recognition,
most advances rely on closed-world assumptions—models are trained on fixed label spaces and
therefore struggle when encountering previously unseen categories. Humans, by contrast, naturally
generalize from prior knowledge to organize and recognize new concepts. This discrepancy has led
to growing interest in category discovery (Vaze et al., 2022; Han et al., 2021; Wen et al., 2023).

Early studies formulated this task as Novel Class Discovery (NCD) (Han et al., 2021), where all
unlabeled samples belong to novel categories. To better reflect realistic conditions, Generalized
Category Discovery (GCD) (Vaze et al., 2022; Wen et al., 2023) extended this setting by allowing
unlabeled data to contain a mixture of known and unknown classes, requiring models to both identify
known classes and cluster new ones. However, both NCD and GCD are built upon static datasets and
assume simultaneous access to labeled and unlabeled data. These assumptions diverge from real-
world conditions, where data typically arrive as continuously evolving, unlabelled streams. As a
result, NCD and GCD overlook the dynamic nature of open environments and fall short of modeling
realistic data-stream scenarios.

To close this gap, the community has recently moved toward Continual Category Discovery
(CCD) (Park et al., 2024; Cendra et al., 2024), which integrates continual learning with category
discovery. CCD aims to progressively identify emerging categories while preventing catastrophic
forgetting of previous knowledge. Despite this progress, existing CCD settings commonly assume
that data at each stage comes from a single, fixed domain—an assumption rarely met in open envi-
ronments. In practical scenarios, samples may originate from diverse sources or shift across domains

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

while new categories appear. For example, an online platform may continuously receive animal im-
ages from different cameras or users; as the domain (e.g., lighting, style, device) changes, rare
species can emerge concurrently with existing categories.

Motivated by these limitations, we propose a more realistic setting called Open-World Continual
Category Discovery (OW-CCD). In OW-CCD, models must automatically discover known and
unknown categories from unlabeled streams without assuming domain consistency. This introduces
several challenges. First, it is difficult to preserve recognition ability for known categories under
distribution shifts, as existing CCD methods are not designed to handle domain variations. Second,
the model must continually discover emerging categories in dynamic, non-stationary streams. Tra-
ditional domain adaptation techniques are unsuitable, as they often assume overlapping label spaces;
naı̈ve alignment may even cause negative transfer and suppress novel-category discovery. Moreover,
most adaptation methods focus on aligning known classes, offering little guidance for discovering
unseen ones.

Figure 1: (a-c) Visualization of low-
frequency and high-frequency components
of the images. (d) Visualization of the den-
sity scores S(x), where the density distribu-
tion exhibits a clear bimodal pattern corre-
sponding to known and unknown samples.

To address these challenges, we introduce PRISM
(Progressive Robust dIscovery under StreaMing
data), a new adaptive divide-and-conquer frame-
work for OW-CCD. Our design is inspired by spec-
tral analysis (Fig. 1(a–c)): high-frequency compo-
nents tend to capture domain-invariant global se-
mantics (e.g., structures), whereas low-frequency
components encode domain-dependent details (e.g.,
style). Leveraging this insight, we develop a high-
frequency-driven category separation module to dis-
tinguish known from unknown samples under do-
main shift. To ensure reliable recognition of known
categories, we further propose a sparse assignment
matching module based on proximal optimal trans-
port, producing stable and sparse pseudo-labels. Fi-
nally, following the core principle of category dis-
covery—transferring knowledge from known to un-
known classes through semantic relations—we in-
troduce an invariant knowledge transfer (IKT) mod-
ule. Instead of relying on domain-specific cues that
may distort associations, IKT represents the rela-
tions between known and unknown classes as rank-
ing permutations. These permutations are converted
into ranking probability distributions and enforced
to remain consistent across domains. This rank-based formulation ensures that semantically closer
classes contribute stronger knowledge transfer; for instance, in CUB, closely related bird species
such as Indigo Bunting and Lazuli Bunting share meaningful high-level semantics despite subtle
visual differences. Maintaining these relationships across domains enables stable transfer and facil-
itates robust discovery of novel categories.

In summary, our contributions are as follows: (1) we introduce the Open-World Continual Category
Discovery (OW-CCD) setting and present PRISM, an adaptive divide-and-conquer framework; (2)
we propose a high-frequency-driven category separation strategy to distinguish known and unknown
samples under domain shifts; (3) we design a sparse assignment matching module based on proxi-
mal optimal transport for reliable pseudo-labeling of known categories; (4) we develop an invariant
knowledge transfer module that preserves semantic relations between known and unknown cate-
gories across domains for stable discovery; and (5) through extensive evaluation on the SSB-C and
DomainNet benchmarks, we demonstrate that PRISM achieves strong effectiveness and robustness,
consistently outperforming state-of-the-art CCD approaches.

2 RELATED WORK

Category Discovery Category discovery aims to leverage knowledge from labeled classes to iden-
tify novel concepts in unlabeled data. Novel Class Discovery (NCD) was introduced to address sce-
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Figure 2: The overall framework of our proposed method.

narios where all unlabeled samples belong to unseen categories. Early methods adopted two-stage
pipelines, such as AutoNovel (Han et al., 2021), which transfers knowledge through self-supervised
learning with ranking statistics. In contrast, unified end-to-end approaches (Fini et al., 2021) directly
integrate representation learning and clustering into a single stage. Later extensions address sample
imbalance by designing self-cooperation mechanisms that leverage both known and novel represen-
tations for mutual learning (Wang et al., 2024c), or enhance class-level knowledge transfer through
symmetric relationship modeling and pairwise consistency constraints (Zhou & Chen, 2025). Gen-
eralized Category Discovery (GCD) relaxes this setting by mixing known and unknown categories.
Early frameworks combined supervised and unsupervised contrastive learning with clustering (Vaze
et al., 2022), while SimGCD (Wen et al., 2023) introduced a parametric classifier for efficiency.
More recent work explores hierarchical modeling (Liu et al., 2025b), prototype-based learning (Ma
et al., 2025), and reciprocal learning with distribution regularization (Liu et al., 2025a). Beyond
these directions, some studies investigate domain-level extensions, addressing category discovery
under domain shifts (Wang et al., 2024a; Rongali et al., 2024). Continuous Category Discovery
(CCD) further considers streaming settings. Methods such as grow and merge (Zhang et al., 2022),
energy-guided discovery (Park et al., 2024), Gaussian mixture prompting (Cendra et al., 2024), and
Bayesian inference (Dai & Chauhan, 2025) have been proposed to tackle class discovery in stream-
ing data, though they often operate under the simplifying assumption of single-domain streams.

Domain Adaptation Domain adaptation tackles distribution gaps between labeled source and tar-
get domains. Unsupervised domain adaptation (UDA) leverages labeled source and unlabeled target
data, typically by learning domain-invariant representations. Discrepancy-based methods minimize
moment mismatches (Sun & Saenko, 2016; Long et al., 2015; Tzeng et al., 2014), while adversar-
ial approaches employ domain discriminators (Saito et al., 2018a; Sankaranarayanan et al., 2018).
Transformer-based backbones (Dosovitskiy et al., 2020) have also been explored with attention-
driven alignment (Sun et al., 2022; Xu et al., 2021). Source-Free Domain Adaptation (SFDA)
removes source data access. Representative works include prototype transfer (Chidlovskii et al.,
2016), iterative pseudo-labeling (Liang et al., 2019), SHOT (Krause et al., 2010; Shi & Sha, 2012),
and neighborhood regularization (Yang et al., 2021). Beyond this, Open-Set Domain Adaptation
(OSDA) addresses unknown target categories. Strategies include confidence thresholding (Saito
et al., 2018b), progressive separation (Liu et al., 2019), and causal adjustment (Li et al., 2023b).
While OSDA extends domain adaptation to more realistic scenarios, most existing methods remain
centered on classifying known categories and pay limited attention to systematically exploring the
unknown label space.
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3 METHODOLOGY

3.1 PROBLEM STATEMENT

Open-World Continual Category Discovery (OW-CCD) involves one base learning session followed
by T online continual discovery sessions. In the base session, we are provided with a labeled dataset
Dl = {(xi, yi)}N

l

i=1 consisting of N l labeled samples drawn from a known category space Cl. In
each subsequent online discovery session, an unlabeled data stream Du

t = {xi}
Nu

t
i=1 is introduced in-

crementally. This stream not only contains samples from the previously seen known categories, but
also includes samples from novel categories Cut in session t. Moreover, these samples may originate
from domains that differ from the domain distributions observed in the base session, thus introduc-
ing additional domain shift. The goal of OW-CCD is to enable the model to robustly discover novel
concepts from the dynamic unlabeled data stream in an online manner, while simultaneously main-
taining recognition capability for known categories and alleviating the impact of distribution shifts
as much as possible.

Fig. 2 illustrates the overall framework of our proposed PRISM method. In the base session, we first
pre-train a model θ = {f, g} on the labeled dataset using cross-entropy loss, where f(·) denotes
the feature extractor and g(·) is the classifier head. This provides discriminative representations as
a foundation for subsequent discovery. In the online discovery stage, we then introduce three key
innovations. First, the High-Frequency-Driven Category Separation (HCS) is employed to automat-
ically separate known and unknown categories by exploiting high-frequency information in images.
Second, the Sparse Assignment Matching (SAM) module assigns reliable cluster labels to samples
from known categories. Finally, the Invariant Knowledge Transfer (IKT) module captures robust
category associations across different domains, thereby enabling stable and effective novel category
discovery.

3.2 HIGH-FREQUENCY-DRIVEN CATEGORY SEPARATION (HCS)

Since direct distribution alignment may lead to negative transfer, we adopt a divide-and-conquer
strategy. Below, we first describe how to extract the high- and low-frequency components of images,
and then employ the HCS module for category separation. Given an input image xi ∈ RH×W×C ,
where H , W , and C denote the height, width, and number of channels, respectively, we first trans-
form it into the frequency domain using the Discrete Fourier Transform (DFT):

F(xi)(u, v, c) =

H−1∑
h=0

W−1∑
w=0

xi(h,w, c) e
−j2π

(
hu
H +

wv
W

)
, (1)

where j2 = −1, u and v denote the spatial frequency coordinates, and c indexes the RGB channels.
Following common practice, the low-frequency components are shifted to the center of the spectrum
for convenience. To separate low- and high-frequency information, we construct a binary mask
M ∈ Rr×r:

Mu,v =

{
1, if max(|u− H

2 |, |v −
W
2 |) ≤ r · min(H,W )

2 ,

0, otherwise,
(2)

where r controls the relative size of the mask. The low- and high-pass frequency components are
then obtained as:

F l(xi) =M ⊙F(xi), Fh(xi) = (I −M)⊙F(xi), (3)

where ⊙ denotes element-wise multiplication, and F l and Fh are the masked low- and high-
frequency spectra obtained from the DFT F(xi). Finally, inverse DFT is applied to recover spatial
representations of low- and high-frequency images: xli = F−1(F l(xi)), x

h
i = F−1(Fh(xi)).

We focus on the high-frequency component xhi of the unlabeled data, as high-frequency cues often
contain discriminative structural information that helps distinguish known from unknown categories
(see Fig. 1(a-c)). These components are fed into the pre-trained feature extractor f from the pre-
vious stage to obtain high-frequency representations. Based on these representations, we define a

density scoring function: S(x) = ν

(
maxc

f(xh)·ec
∥f(xh)∥·∥ec∥

)
, where ec denotes the prototype of the
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known class c from the previous stage, and ν(·) is a min–max normalization mapping scores to
[0, 1]. Intuitively, S(x) measures the maximum similarity between the high-frequency representa-
tion of an unlabeled sample and known category prototypes: larger values indicate that the sample
is closer to known classes, while smaller values imply it may belong to an unknown class. As
shown in Fig. 1(d), we empirically observe that the distribution of S(x) often exhibits a bimodal
shape, corresponding to known and unknown samples, respectively. To automatically separate
them, we model the distribution of S(x) using a two-component Gaussian Mixture Model (GMM):
P (x) = π(x)N (x|µkno, σ

2
kno)+(1−π(x))N (x|µunk, σ

2
unk), where π(x) is the posterior probability

of being assigned to the known component, estimated using the EM algorithm. N (x | µ, σ2) denotes
a Gaussian distribution with mean µ and variance σ2, and (µkno, σ

2
kno) and (µunk, σ

2
unk) correspond to

the parameters of the known and unknown components, respectively. Finally, at each online session
t, we split the incoming data stream Du

t into known and unknown subsets:

Du
t,kno = {x | x ∈ Du

t ∧ π(x) ≥ 0.5}, Du
t,unk = {x | x ∈ Du

t ∧ π(x) < 0.5}. (4)

This separation provides a reliable mechanism for dynamically identifying known-like and
unknown-like samples, which lays the foundation for subsequent discriminative learning and novel
category discovery.

3.3 SPARSE ASSIGNMENT MATCHING (SAM)

Figure 3: Toy illustration of our pro-
posed SAM method. Conventional Sinkhorn
and ℓ2-regularized solvers tend to produce
smooth yet dense couplings, whereas the
proposed SAM yields a sparser transport
plan with better performance.

Since we have already obtained the known-category
samples via the proposed HCS module, we next
explore the possible labels for these known sam-
ples xkno ∈ Du

t,kno. As xkno shares the same
semantic space with the known prototypes from
the previous stage, domain adaptation techniques
can be employed to uncover the latent alignment.
In this process, Optimal Transport (OT) provides
a powerful tool to automatically discover proper
sample–prototype correspondences across domains,
thereby alleviating domain discrepancies (Courty
et al., 2014; Flamary et al., 2016). However, directly
solving the OT problem with linear programming in-
curs a prohibitive computational cost (Xu & Dan,
2025); even though the entropy regularization can
improve efficiency, it usually yields overly dense transport plans, leading to inaccurate assignments
as illustrated in Fig. 3(a). To overcome this limitation, we propose a Sparse Assignment Matching
(SAM) scheme by incorporating an ℓ2-norm proximal term. The optimization objective is formu-
lated as:

min
γ∈∆

ℓ(γ) =

Nt,kno∑
i=1

Ct−1∑
j=1

[
γij Cij +

ε

2

(
γij − γ

(l)
ij

)2]
, (5)

where Nt,kno denotes the number of samples in Du
t,kno. Ct−1 denotes the number of known classes

from the previous stage. The cost matrix is defined asCij = − log
(
g (f(xi,kno))j

)
.A smaller value

of Cij indicates that sample xi,kno has a higher probability of belonging to the j-th class, while a
larger cost suggests a less plausible assignment. The second term ε

2

∑
i,j(γij − γ

(l)
ij )

2 acts as an ℓ2-
based proximal regularizer, which suppresses oscillations across iterations and enforces sparse and
stable solutions. Meanwhile, ∆ =

{∑Ct−1

j=1 γij = âi = 1,
∑Nt,kno

i=1 γij = b̂j =
Nt,kno
Ct−1 , γij ≥ 0

}
is

the feasible set. We initialize γ(0)ij = 1
Ct−1 for the following iterations. To avoid directly handling the

constrained problem, we first obtain the Fenchel–Legendre dual formulation of the original problem:

max
ψ,φ

Nt,kno∑
i=1

ψiâi +

Ct−1∑
j=1

φj b̂j − ε

2

Nt,kno∑
i=1

Ct−1∑
j=1

[
ψi + φj − C̃ij

ε

]2
+

, (6)

where φ and ψ denote the Lagrange multipliers, and [z]2+ = (max{0, z})2 denotes the truncated
quadratic operator ensuring non-negativity. C̃ij = Cij − εγ

(l)
ij . Note that the original con-
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strained OT problem in Eq. (5) is transformed into an unconstrained optimization over (ψ,φ),
which is computationally more efficient. The detailed optimization procedure for solving ψ and
φ is provided in the Appendix. Then the transport plan γ(l+1) can be updated in closed form as:
γ
(l+1)
ij = max

{
0, (ψi + φj + εγ

(l)
ij − Cij)/ε

}
.

With the optimal transport plan γ∗ obtained from sparse sample-prototype alignment, we assign
reliable pseudo labels to the known samples xkno ∈ Du

t,kno. Moreover, compared with the standard
ℓ2-regularized OT, the proposed SAM produces significantly sparser and clearer assignment pat-
terns, as depicted in Fig. 3(b)–(c), which contributes to more trustworthy pseudo-label generation.

3.4 INVARIANT KNOWLEDGE TRANSFER (IKT)

For unknown category discovery, we build on the core idea of category discovery—transferring cat-
egory knowledge from known to unknown classes by exploiting their semantic associations. Under
domain shift, however, such associations may be distorted by domain-specific style factors, lead-
ing the model to capture spurious rather than genuine relations. We argue that effective discovery
should instead depend on domain-invariant category associations that reflect stable semantic struc-
tures. To this end, we propose an Invariant Knowledge Transfer module, which explicitly models the
relationships between unknown samples and known prototypes across domains and enforces their
invariance, thereby facilitating the transfer of authentic semantic knowledge. Specifically, in each
previous stage we pre-compute the frequency-domain statistics of the known domain. For this pur-
pose, we apply the discrete Fourier transform as in Eq. (1) and decompose each spectrum into low-
and high-frequency components {F l,Fh} according to Eq. (3). Inspired by recent works (Li et al.,
2022; Wang et al., 2022) that employ spatial feature statistics to characterize style, we characterize
the low-frequency spectrum by the channel-wise mean and standard deviation:

µ(F l
i ) =

1
HW

∑
u,v

F l
i (u, v, c), σ(F l

i ) =
1

HW

∑
u,v

[F l
i (u, v, c)− µ(F l

i )]
2. (7)

We assume that the distribution of these statistics follows a Gaussian distribution, and estimate their
variances across the data from the previous stage:

Σ2
µ(F l

i ) =
1

Nt−1

Nt−1∑
i=1

[
µ(F l

i )− E[µ(F l
i )]
]2
, Σ2

σ(F l
i ) =

1

Nt−1

Nt−1∑
i=1

[
σ(F l

i )− E[σ(F l
i )]
]2
,

(8)
where Nt−1 denotes the number of samples from the previous stage. We then sample perturbed
low-frequency statistics from these Gaussian distributions:
µ̂(F l

i ) = µ(F l
i ) + ϵµ Σµ(F l

i ), ϵµ ∼ N (0, 1), σ̂(F l
i ) = σ(F l

i ) + ϵσ Σσ(F l
i ), ϵσ ∼ N (0, 1).

(9)

For an unknown sample xti,unk in the current data stream, we extract its low-/high-frequency com-
ponents (F l

i,unk,Fh
i,unk) via Eq. (3) and reconstruct the low-frequency spectrum with the sampled

statistics:

F̂ l
i,unk = σ̂(F l

i ) ·
F l
i,unk − µ(F l

i,unk)

σ(F l
i,unk)

+ µ̂(F l
i ). (10)

Finally, we combine F̂ l
i,unk with the original high-frequency part Fh

i,unk to form an augmented spec-
trum F̂(xti,unk) and apply inverse DFT to obtain the augmented sample x̂ti,unk. Then, for each
unknown-category sample xti,unk and its style-transferred counterpart x̂ti,unk, we extract their fea-

ture representations: zti,unk = f(xti,unk), ẑ
t
i,unk = f(x̂ti,unk). Let {et−1

c }Ct−1

c=1 denote the set of known
class prototypes from the previous stage. We convert the cosine similarities between the unknown
sample and each known class prototype under two views directly into the strength parameters for the
Plackett–Luce (PL) model: κi,c = exp

(
cos(zti,unk, e

t−1
c )

)
, κ̂i,c = exp

(
cos(ẑti,unk, e

t−1
c )

)
. Instead

of treating ranking as a deterministic permutation, we consider all possible orderings of known
class prototypes with respect to the sample. Given strength parameters κi = {κi,1, . . . , κi,Ct−1}, the
probability of a particular permutation ξ ∈ P (where |P| = Ct−1!) is defined as:

P (ξ | κi) =
Ct−1∏
k=1

κi,ξ(k)∑Ct−1

k′=k κi,ξ(k′)
. (11)
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Here, ξ(k) denotes the prototype index placed at the k-th position in the permutation. For example,
when Ct−1 = 3 and ξ = (a, b, c), the probability is: P (ξ | κi) = κi,a

κi,a+κi,b+κi,c
· κi,b

κi,b+κi,c
· κi,c

κi,c
. This

formulation transforms the relationships between an unknown sample and the known prototypes into
a listwise ranking distribution, which captures their global relational structure. To ensure that these
associations remain consistent across domains, we enforce view-invariant ranking by aligning the
distributions from the original and style-transferred views through divergence minimization:

Lrank =
1

Nt,unk

Nt,unk∑
i=1

ℓKL(P (P | κi), P (P | κ̂i)) , (12)

where Nt,unk is the number of unknown category samples, P (P | κi) denotes the full permutation
distribution as in Eq. (11), and ℓKL is the Kullback–Leibler divergence. By aligning all possible
orderings of prototypes across views, this loss encourages the model to preserve the global rela-
tive ranking between unknown samples and known semantic centers, thereby providing a stronger,
structure-aware regularization signal that ultimately enhances category discovery across domains.

3.5 ONLINE ADAPTATION

Following the setup of (Park et al., 2024), we assign labels to known and novel samples with dif-
ferent strategies. For data from known categories, we employ the SAM module to generate reliable
pseudo-labels. For previously unseen categories, i.e., samples not belonging to any known class,
we adopt Affinity Propagation (Frey & Dueck, 2007) to automatically infer cluster memberships.
As a non-parametric clustering algorithm, Affinity Propagation iteratively exchanges messages be-
tween samples based on pairwise similarities, thereby estimating the optimal number of clusters
without requiring it as a prior, which is particularly suitable for open-world scenarios where the
number of novel classes is unknown. The inferred clusters are then used to dynamically expand
the online classifier, enabling the integration of emerging categories. During online learning, we
combine pseudo-labeled known samples with clustered novel samples and incrementally update the
model using a standard cross-entropy loss, allowing the system to acquire new semantic knowledge
without revisiting past data. The overall optimization objective of our method can be formulated as:
Ltotal = Lce + λ1Lrank, where Lce denotes the cross-entropy loss computed on pseudo-labeled data
and λ1 is a balancing hyperparameter.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Dataset We evaluate our method on two representative benchmarks: the Corrupted Semantic Shift
Benchmark (SSB-C) (Wang et al., 2024a) and DomainNet (Peng et al., 2019). SSB-C extends
the Semantic Shift Benchmark (SSB) with nine corruption types at five severity levels, covering
three fine-grained datasets. This benchmark provides a challenging platform to assess robustness
under both semantic and visual perturbations. DomainNet is a large-scale dataset with six diverse
domains, featuring hundreds of categories and substantial domain gaps. Following (Wang et al.,
2024a), we use the original datasets in SSB-C as known domains and their corrupted versions as
unknown domains. For DomainNet, the Real domain serves as the known domain, while each of the
remaining domains is treated as an unknown domain in turn; we also evaluate a mixed setting where
all non-Real domains are merged into one unknown domain (details in the Appendix). The category
split follows (Cendra et al., 2024): a subset of labeled known classes from the known domain is
used in the base session, and subsequent sessions sequentially introduce new streams containing
both known and novel categories. Importantly, each session includes samples from both known and
unknown domains, simulating realistic scenarios with simultaneous category expansion and domain
shift.

Implementation details We adopt ViT-B/16 (Dosovitskiy et al., 2020) as the backbone, pretrained
with DINO (Caron et al., 2021; Oquab et al., 2023). Following prior work (Wen et al., 2023; Park
et al., 2024), only the final transformer block is fine-tuned at each stage using SGD for 30 epochs
with a batch size of 128. The initial learning rate is 0.1 and decayed to 1×10−4 via cosine annealing,
and weight decay is fixed at 5× 10−5. We set the trade-off parameter λ1 = 1, the number of stages
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T = 3, and the binary mask ratio r = 0.3. The proximal strength parameter ε in the SAM module
is fixed to 0.5. All experiments are repeated with three random seeds, and averaged results are
reported. Models are implemented in PyTorch and trained on eight NVIDIA RTX 4090 GPUs.

Evaluation protocol. We adopt continual clustering accuracy (cACC) (Cendra et al., 2024) as our
primary evaluation metric. cACC measures the average clustering performance over all sessions up
to stage t, defined as: cACCt = 1

t

∑t
k=1 ACCk. Here, ACCk denotes the clustering accuracy on

the test dataset of session k. Following (Wang et al., 2024a; Vaze et al., 2022), clustering accuracy
(ACC) is defined by comparing the ground-truth labels yi with the predicted cluster assignments ŷi:
ACC = 1

|Du
t |
∑|Du

t |
i=1 I{yi = g∗(ŷi)}, where g∗ denotes the optimal permutation mapping predicted

clusters to their ground-truth counterparts. We report cACC results on both known and unknown
domains, and further break them down into All, Old, and New categories for a comprehensive eval-
uation.

Table 1: Clustering performance on DomainNet benchmark. We use Real as the known domain
and each of the remaining domains as the unknown domain. We report the average All / Old / New
accuracy across all stages for both domains.

Real→ Painting Real→ Sketch Real→ Quickdraw Real→ Clipart Real→ Infograph
Methods

Real Painting Real Sketch Real Quickdraw Real Clipart Real Infograph
All Old New All Old New All Old New All Old New All Old New All Old New All Old New All Old New All Old New All Old New

GCD 51.3 67.2 45.4 27.4 26.7 28.1 52.3 65.7 41.7 9.2 14.5 10.1 38.7 56.2 29.6 5.0 4.7 5.8 46.7 65.7 40.1 14.5 21.2 10.1 39.8 55.3 32.4 8.1 9.8 6.4
SimGCD 48.4 63.9 41.3 22.6 22.4 23.5 48.5 60.2 36.5 7.2 11.3 9.2 32.4 50.3 23.5 4.2 4.0 5.1 40.2 58.8 33.5 10.3 18.8 8.2 33.6 49.2 27.8 6.7 7.8 5.2
SPTNet 49.8 64.5 42.5 24.1 23.5 24.3 49.9 62.3 37.8 7.9 11.7 9.6 34.8 52.6 24.8 4.9 4.6 5.5 43.1 60.3 35.9 11.6 19.3 8.9 35.9 51.4 29.8 7.2 8.0 5.9
RLCD 50.8 66.2 44.1 25.5 24.6 25.8 51.2 64.8 40.1 8.4 12.1 10.0 36.1 54.0 25.7 4.8 4.7 5.3 45.2 62.1 36.9 13.5 20.9 9.8 37.1 53.2 32.5 8.4 8.9 6.8
G&M 47.1 62.3 41.2 26.3 25.5 26.2 50.9 63.4 42.3 10.9 15.1 10.5 34.1 50.2 27.3 4.3 4.1 5.2 40.3 61.1 34.2 11.4 19.2 8.8 32.4 50.1 27.6 7.5 9.2 5.5
Happy 50.6 66.5 44.7 28.0 27.1 28.9 52.0 65.0 41.2 11.2 15.6 10.7 35.6 51.4 28.9 4.6 4.5 5.2 45.6 62.4 37.1 12.0 19.6 9.0 34.2 50.5 28.0 7.9 9.4 5.6
PA-CGCD 55.4 70.3 48.1 30.1 30.8 30.2 55.1 70.7 46.6 12.3 16.1 11.2 43.6 60.4 34.2 5.1 5.0 6.0 52.2 70.3 44.6 17.8 24.5 12.3 45.2 61.3 38.1 9.0 11.8 7.1
DEAN 56.0 71.7 47.9 32.8 34.4 31.5 56.7 71.5 47.6 12.9 16.8 11.2 44.0 61.0 35.1 5.3 5.1 6.2 55.1 72.7 47.5 20.3 26.7 15.0 46.7 62.3 40.8 9.5 12.5 7.9
PromptCCD 56.5 71.2 50.3 31.5 32.1 31.2 57.4 73.6 48.6 13.4 17.7 12.1 45.2 62.3 36.7 5.8 5.1 6.5 54.1 71.2 46.7 19.8 26.1 14.4 47.1 63.1 40.2 9.2 12.2 7.8
VB-CGCD 57.3 71.0 52.4 32.4 33.6 32.5 56.9 73.1 48.8 13.9 18.1 12.9 47.1 62.1 38.1 6.0 4.9 6.8 55.4 72.0 47.5 19.6 25.8 14.2 48.3 63.9 41.9 9.4 12.4 8.0
PRISM 60.9 74.1 55.1 39.2 39.0 38.2 60.1 73.4 51.0 16.9 20.1 15.9 54.0 74.0 49.2 7.1 6.5 7.4 58.0 72.3 51.2 24.0 30.4 19.1 60.1 73.8 53.1 10.9 14.1 9.8

Table 2: Clustering performance on SSB-C benchmarks. Each dataset contains both Original and
Corrupted settings, and we report the average All / Old / New accuracy across all stages for both
domains.

CUB-C Stanford Cars-C FGVC-Aircraft-CMethods Original Corrupted Original Corrupted Original Corrupted
All Old New All Old New All Old New All Old New All Old New All Old New

GCD 29.4 47.7 23.4 26.8 45.9 20.1 26.4 56.1 21.5 22.3 43.1 11.2 27.7 33.6 24.9 28.8 41.4 28.8
SimGCD 26.6 44.5 21.0 23.4 42.4 17.7 23.1 52.5 18.9 19.3 39.7 9.8 25.4 30.1 22.1 25.2 38.1 25.8
SPTNet 27.8 45.2 22.0 25.1 44.2 18.1 24.9 55.0 20.3 21.1 41.6 9.9 26.1 31.2 23.3 26.9 39.5 26.7
RLCD 29.1 46.8 23.8 26.2 45.3 19.4 26.8 56.9 22.1 22.9 43.2 9.7 27.8 32.3 24.2 27.3 40.7 28.1
G&M 16.4 34.1 10.5 13.7 32.1 7.7 15.7 43.8 12.3 11.4 30.5 6.7 20.5 24.8 17.9 21.6 32.7 22.3
Happy 22.0 39.4 16.9 19.8 38.4 14.2 21.9 48.7 18.9 18.1 37.0 13.2 24.3 27.9 21.3 24.8 35.6 25.7
PA-CGCD 28.3 46.5 22.7 25.4 44.7 18.4 25.2 55.1 20.9 21.2 41.5 10.2 26.4 31.4 23.7 27.8 40.1 27.2
DEAN 28.9 47.1 23.0 26.3 46.2 18.2 26.1 58.1 19.4 22.1 41.2 12.9 28.1 32.8 28.9 29.1 40.1 30.3
PromptCCD 30.1 48.1 24.5 27.4 46.1 20.3 27.4 57.4 22.1 23.1 44.4 11.4 29.9 34.5 26.4 30.3 42.9 29.9
VB-CGCD 34.2 51.8 26.3 31.7 49.2 23.4 31.6 59.9 26.1 26.3 47.9 15.1 33.2 37.3 29.7 32.3 44.5 31.6
PRISM 49.3 64.9 44.2 44.0 60.9 37.0 36.9 60.0 29.1 33.3 56.5 23.5 40.1 48.9 40.1 36.4 46.1 34.1

4.2 MAIN RESULTS

We compare our method with representative continual discovery baselines, including Grow & Merge
(G&M) (Zhang et al., 2022), Happy (Ma et al., 2024), PA-CGCD (Kim et al., 2023), DEAN (Park
et al., 2024), PromptCCD (Cendra et al., 2024), and VB-CGCD (Dai & Chauhan, 2025), as well
as re-implemented GCD methods (GCD (Vaze et al., 2022), SimGCD (Wen et al., 2023), SPT-
Net (Wang et al., 2024b) and RLCD (Liu et al., 2025a)). We also note that some recent works,
such as HiLo (Wang et al., 2024a) and CDAD-Net (Rongali et al., 2024), have explored handling
distribution shifts in GCD. However, since these methods require access to the entire dataset rather
than session-based streams, they cannot be directly applied to CCD, and are therefore not included
in our comparison. Table 1 and Table 2 present the results on the SSB-C and DomainNet bench-
marks, respectively. It can be observed that in the challenging OW-CCD setting, existing GCD and
CCD approaches struggle to cope with domain shifts, leading to unreliable recognition of known
classes and poor discovery of new ones. In contrast, our approach consistently achieves more robust
clustering performance, outperforming both prior CCD and GCD methods by a clear margin. For
instance, on CUB-C, our method surpasses the strongest CCD competitor, VB-CGCD, by 15.1%
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Table 3: Component-wise ablation on Real →
Painting.

Components Real Painting
HCS SAM IKT All Old New All Old New

✗ ✗ ✗ 54.6 68.7 46.5 28.7 28.1 27.9
✓ ✓ ✗ 58.1 72.9 49.9 35.0 35.9 32.5
✓ ✗ ✓ 56.9 70.2 52.7 33.2 31.8 35.2
✓ ✓ ✓ 60.9 74.1 55.1 39.2 39.0 38.2

Table 4: Comparison of separation strategies on
Real → Painting.

Real Painting
Methods

All Old New All Old New

origin image 55.0 68.7 47.2 29.6 28.9 28.3
entropy-based 54.4 69.0 46.7 29.9 29.1 28.6
energy-based 55.8 69.9 48.1 30.6 29.5 29.9
PRISM 60.9 74.1 55.1 39.2 39.0 38.2

in the clean domain and 12.3% in the corrupted domain, highlighting its robustness against both
semantic and visual perturbations. On the more demanding DomainNet benchmark, similar gains
are observed. For instance, in the Real→Painting task, PRISM outperforms VB-CGCD by 3.6%
on the source domain (Real) and 6.8% on the target domain (Painting). These results highlight that
our approach generalizes effectively to new domains while reliably discovering novel categories in
continuous streams.

4.3 ANALYSIS

Effectiveness of different components. We conduct a comprehensive ablation study to examine
the contribution of each component in our framework. As shown in Table 3, the baseline performs
poorly, highlighting the severe impact of domain shifts on both known and novel category recog-
nition. Incorporating the HCS module to separate known from unknown samples, followed by the
SAM module, substantially improves clustering accuracy on known categories, confirming the effec-
tiveness of sparse assignment matching. Introducing the IKT module further enhances the discovery
of novel categories, underscoring the importance of preserving robust category associations under
distribution shifts. When all components are integrated, the model achieves the best overall per-
formance, demonstrating the benefit of combining these modules for reliable open-world continual
category discovery.

Comparison with alternative separation modules. To further validate the contribution of the
HCS module, we carried out a focused ablation study. We compared with three baselines: (1) an
entropy-driven separation scheme (Safaei et al., 2024), (2) an energy-based approach (Park et al.,
2024), and (3) a simplified variant of HCS that relies on raw image features without applying fre-
quency decomposition. As reported in Table 4, the proposed module consistently outperforms these
alternatives. Its strength lies in exploiting high-frequency information, which preserves more de-
tailed structural and semantic patterns, allowing the model to more effectively separate unlabeled
data. This leads to a more reliable basis for recognizing both previously seen and emerging cate-
gories in continual discovery. In addition, Figure 5 in Appendix provides a qualitative illustration
of this effect. The HCS module provides a clearer separation between known and unknown groups,
demonstrating its ability to filter out style-related noise while retaining meaningful semantic rela-
tions. These observations collectively indicate that HCS is not only beneficial for sample separation
but also crucial for enhancing overall performance in open-world category discovery under distribu-
tion shifts.

5 CONCLUSION

In this work, we take the first step toward tackling the challenging problem of open-world continual
category discovery and introduce three key innovations to address it. First, a high-frequency-driven
category separation module leverages spectral details to reliably distinguish between known and
novel categories. Second, a sparse assignment matching module employs proximal optimal trans-
port to assign trustworthy clustering labels to known classes. Third, an invariant knowledge trans-
fer module enforces semantic association consistency across domains, enabling robust knowledge
transfer under distributional shifts. Extensive experiments on multiple benchmarks validate the ef-
fectiveness of our framework, demonstrating its ability to consistently recognize known categories
and uncover new ones in dynamic, non-stationary data streams.
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A APPENDIX

A.1 MORE RELATED WORK

A.1.1 CATEGORY DISCOVERY

Category discovery aims to transfer knowledge from known classes to identify novel concepts,
where unlabeled data may contain unseen categories. Novel Class Discovery (NCD) was first in-
troduced to explore how knowledge from labeled classes can be leveraged to discover entirely new
ones. Early solutions followed a two-stage strategy. For example, AutoNovel (Han et al., 2021)
employs self-supervised learning with ranking statistics to transfer knowledge for clustering. Sub-
sequently, (Fini et al., 2021) proposed a unified end-to-end framework optimizing multiple objec-
tives simultaneously. IIC (Li et al., 2023a) further model inter-class separability and intra-class
consistency to improve robustness. OpenMix (Zhong et al., 2021) dynamically mixes labeled and
unlabeled data to refine pseudo-labels and exploit finer relations among novel classes. While NCD
assumes that all unlabeled data belong to novel categories, this assumption limits its practicality.
To address more realistic scenarios, Generalized Category Discovery (GCD) was introduced, where
the unlabeled pool contains both previously seen and unseen categories. Early GCD methods com-
bined supervised contrastive objectives with self-supervised representation learning followed by
semi-supervised clustering (Vaze et al., 2022). Later, SimGCD (Wen et al., 2023) introduced a para-
metric classifier to improve efficiency and inference speed, establishing a strong baseline. Building
on these foundations, researchers have proposed a series of more advanced approaches to tackle dif-
ferent challenges in Generalized Category Discovery. For instance, (Cao et al., 2024) introduced a
memory-preserving mechanism to alleviate catastrophic forgetting and maintain knowledge of seen
classes during novel category adaptation. (Liu et al., 2025b) explored hierarchical space modeling,
arguing that Euclidean or spherical spaces are suboptimal for encoding data with hierarchical struc-
tures, and instead proposed a hyperbolic embedding space to better capture both seen and unseen
categories. To unify the treatment of old and new classes, (Ma et al., 2025) developed ProtoGCD,
which leverages joint prototypes and dual-level pseudo-labeling to balance the recognition of known
and novel categories while also estimating the number of unseen classes. Beyond the single-domain
setting, (Wang et al., 2024a) and (Rongali et al., 2024) extended GCD into cross-domain scenarios,
addressing domain shift by aligning representations across source and target domains with special-
ized augmentation and adversarial strategies. However, their approaches remain limited to static
GCD datasets, whereas our work focuses on tackling domain shift under continuous streaming data,
a setting that more faithfully reflects real-world dynamics. In parallel, multimodal extensions have
also been explored: (Zheng et al., 2024) proposed TextGCD, a two-phase framework that generates
descriptive texts via retrieval and employs cross-modality co-teaching, while (Wang et al., 2025)
introduced TES, which synthesizes pseudo text embeddings from CLIP to bridge visual and tex-
tual modalities. Together, these works significantly improve the balance between known and novel
classes, and continually push the performance boundaries of GCD across both generic and fine-
grained datasets.

Going further, Continuous Category Discovery (CCD) extends GCD to an incremental setting,
where models continually receive new streams of unlabeled data. The key challenge lies in dis-
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covering new categories while retaining knowledge of past ones. Recent progress in CCD has
introduced diverse strategies to alleviate forgetting and improve discovery quality. (Zhang et al.,
2022) presented the Grow-and-Merge framework, which alternates between a growth phase for en-
riching feature diversity via self-supervised learning and a merging phase that stabilizes recognition
of previously learned classes. (Wu et al., 2023) proposed a meta-learning optimization approach
that balances class-discriminative representations for known categories with diverse features for
novel discovery. (Park et al., 2024) designed DEAN, an online method that performs discovery
through energy-based guidance and enhances reliability using variance-driven feature augmenta-
tion. (Cendra et al., 2024) introduced PromptCCD, where Gaussian Mixture Prompting acts as a
dynamic pool that prevents forgetting and enables adaptive estimation of category numbers. (Dai &
Chauhan, 2025) developed VB-CGCD, which explains forgetting as covariance misalignment and
employs variational Bayesian inference with covariance-aware classification to improve robustness
under noisy pseudo-labels.

While these advances move CCD closer to practical continual learning, most methods still rely on the
simplifying assumption of a fixed domain within each stage. In reality, streaming data often involve
domain variations or shifts, making such assumptions unrealistic and motivating new frameworks
that explicitly address multi-domain continual discovery.

A.1.2 DOMAIN ADAPTATION

Domain adaptation seeks to mitigate distribution shifts between a labeled source and a target do-
main. A key setting is unsupervised domain adaptation (UDA), which leverages labeled source
data and unlabeled target data for model adaptation. UDA methods typically learn domain-invariant
representations to reduce distribution shifts. Discrepancy-based approaches minimize statistical dif-
ferences between domains via moment-matching techniques (e.g., correlation alignment (Sun &
Saenko, 2016) or Maximum Mean Discrepancy (Long et al., 2015; Tzeng et al., 2014)), while ad-
versarial approaches (Saito et al., 2018a; Sankaranarayanan et al., 2018) employ domain discrimina-
tors to encourage indistinguishable cross-domain features. Recently, Transformer-based backbones
(Dosovitskiy et al., 2020) have been explored to enhance feature alignment through attention mech-
anisms (Sun et al., 2022; Xu et al., 2021). However, most UDA methods assume joint access to
source and target data, which is impractical under privacy constraints. Source-Free Domain Adap-
tation (SFDA) addresses this by adapting only a source-trained model with unlabeled target data.
(Chidlovskii et al., 2016) suggested using a small set of prototypes instead of the complete source
data to facilitate adaptation, while (Liang et al., 2019) enhanced target learning by iteratively refin-
ing pseudo-labels through self-training. SHOT (Krause et al., 2010; Shi & Sha, 2012) transfers the
source-trained encoder to the target domain by combining information maximization with clustering,
keeping the classifier unchanged. To further improve pseudo-label reliability, (Yang et al., 2021) in-
troduced neighborhood consistency regularization across target samples. Beyond these transductive
settings, researchers have also examined Open-Set Domain Adaptation (OSDA), where target data
may involve categories unseen in the source. OSBP (Saito et al., 2018b) introduced a thresholding
strategy to separate unknown samples from the known target subset, while STA (Liu et al., 2019)
proposed a progressive weighting scheme to gradually disentangle them. More recently, ANNA
(Li et al., 2023b) incorporated causal front-door adjustment and decoupled alignment to mitigate
semantic bias and enable more reliable transfer under open-set conditions. Although OSDA broad-
ens the applicability of domain adaptation, it still mainly focuses on recognizing known categories,
while overlooking further exploration of the unknown category space.

A.2 THEORETICAL PROOF

A.2.1 OPTIMIZATION OF SAM

In this section, we elaborate on the optimization procedure for solving the Sparse Assignment
Matching (SAM) objective. Let ψ and φ denote the dual variables. The SAM problem can then
be formulated as:

max
ψ,φ

LS =

Nt,kno∑
i=1

ψiâi +

Ct−1∑
j=1

φj b̂j − ε

2

Nt,kno∑
i=1

Ct−1∑
j=1

[
ψi + φj − C̃ij

ε

]2
+

, (13)
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whereNt,kno denotes the number of known samples, Ct−1 the number of known category prototypes,
C̃ij = Cij − εγ

(l)
ij is the transport cost, âi and b̂j are the corresponding marginals. To efficiently

optimize Eq. equation 13, we adopt the Block Coordinate Descent (BCD) strategy. The updates of
the dual variables are derived by alternatingly fixing one variable and optimizing the other.

Update of ψ. Taking the derivative of LS with respect to ψi and setting it to zero yields:

Ψ(ψi) =

Ct−1∑
j=1

[
ψi −

(
C̃ij − φj

)]
+
= ε âi. (14)

Update of φ. Similarly, for φj , we have:

Φ(φj) =

Nt,kno∑
i=1

[
φj −

(
C̃ij − ψi

)]
+
= ε b̂j . (15)

Update of γ. With the updated dual variables, the primal transport plan γ can be updated. At the
l-th iteration, the optimal γ(l+1) is obtained as:

γ
(l+1)
ij = max

(
0,

ψ
(l)
i + φ

(l)
j + εγ

(l)
ij − Cij

ε

)
,

C̃
(l+1)
ij = Cij − εγ

(l)
ij .

(16)

After several iterations, the optimal solutions of ψ and φ are obtained, based on which the corre-
sponding optimal transport plan γ can be subsequently derived.

Table 5: Class counts at each incremental stage for the Corrupted SSB and DomainNet benchmarks.
We present the cumulative number of categories in both Original and Corrupted settings over four
stages.

Stage CUB-C Stanford Cars-C FGVC-Aircraft-C DomainNet
Original Corrupted Original Corrupted Original Corrupted Real Other Domains

0 140 N/A 130 N/A 70 N/A 225 N/A
1 160 160 152 152 80 80 265 265
2 180 180 174 174 90 90 305 305
3 200 200 196 196 100 100 345 345

Table 6: Overview of class partitions in the labeled dataset (Dl) and unlabeled streams (Du
1 , Du

2 ,
Du

3 ), covering both the known and unknown domains.

Known Domain Unknown DomainClass Range Dl Du
1 Du

2 Du
3 Dl Du

1 Du
2 Du

3

yi ∈ [1, 0.7|C|] 87% 7% 3% 3% 0% 7% 3% 3%
yi ∈ (0.7|C|, 0.8|C|] 0% 70% 20% 10% 0% 70% 20% 10%
yi ∈ (0.8|C|, 0.9|C|] 0% 0% 90% 10% 0% 0% 90% 10%
yi ∈ (0.9|C|, |C|] 0% 0% 0% 100% 0% 0% 0% 100%

A.2.2 THEORETICAL INTUITION ON DOMAIN INVARIANCE OF HIGH-FREQUENCY CUES

Given an input image x(d) ∈ RH×W×C from domain d ∈ {s, t}, we apply the discrete Fourier
transform (DFT) F(·) and its inverse F−1(·). A binary mask M ∈Rr×r is constructed to separate
low- and high-frequency components:

Mu,v =

{
1, if max(|u− H

2 |, |v −
W
2 |) ≤ r · min(H,W )

2 ,

0, otherwise,
(17)
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and we define
F l(x) =M ⊙F(x), Fh(x) = (I −M)⊙F(x), (18)

where ⊙ denotes element-wise multiplication. The corresponding spatial components are obtained
by

xl = F−1(F l(x)), xh = F−1(Fh(x)). (19)

To analyze the domain dependence of different frequency bands, we assume a simple additive de-
composition:

x(d) = u+ v(d), (20)

where u denotes the domain-shared semantic structure (edges, textures, shapes), and v(d) represents
the domain-specific style (illumination, color tone, or imaging pipeline). In the frequency domain,
this becomes

F(x(d)) = F(u) + F(v(d)). (21)

Step 1: High-frequency discrepancy is upper-bounded by the high-frequency tail of style. For the
high-pass band Ωh(r) selected by (I −M), we have

∥Fh(x(s))−Fh(x(t))∥2 = ∥(I−M)⊙(F(v(s))−F(v(t)))∥2 ≤ ∥(I−M)⊙F(v(s))∥2+∥(I−M)⊙F(v(t))∥2.
(22)

Since each domain style v(d) is Cm-smooth (m≥ 1) with bounded Sobolev norm ∥v(d)∥Hm ≤B,
then the Fourier energy of its high-frequency tail decays as∫

∥ω∥>ρ(r)
|F(v(d))(ω)|2 dω ≤ Cm ρ(r)

−2(m−1)B2, (23)

which implies
∥(I−M)⊙F(v(d))∥2 ≤ C1/2

m ρ(r)−(m−1)B. (24)

Substituting into Eq. equation 22, we obtain

∥Fh(x(s))−Fh(x(t))∥2 ≤ 2C1/2
m ρ(r)−(m−1)B ≡ ε(r). (25)

As the cutoff frequency ρ(r) increases, ε(r)→ 0, which means the inter-domain difference in the
high-frequency band becomes negligible, and the high-frequency representation is effectively deter-
mined by the shared semantics u.

Step 2: Low-frequency discrepancy is dominated by style. For the low-pass band Ωl(r), we have

∥F l(x(s))−F l(x(t))∥2 = ∥M⊙(F(u)−F(u)+F(v(s))−F(v(t)))∥2 = ∥M⊙(F(v(s))−F(v(t)))∥2.
(26)

Since F(v(d)) concentrates energy near the origin, the right-hand side is non-negligible across do-
mains, showing that low-frequency spectra encode style and illumination variations.

Step 3: Physical imaging models reinforce this separation. In practice, cross-domain shifts often
arise from: (i) multiplicative/additive low-frequency fields

x(d)(p) = a(d)(p)xphys(p) + b(d)(p), (27)

where a(d) and b(d) are slowly varying and thus mainly perturb the low-frequency spectrum; and
(ii) convolution with smooth kernels k(d), whose transfer functions K(d)(ω) are low-pass, further
attenuating style at high frequency. Both mechanisms reduce the high-frequency contribution of
v(d) and thus tighten the bound ε(r) above.

Conclusion. Combining the above derivations and the Fourier decay property yields

∥Fh(x(s))−Fh(x(t))∥2 ≤ ε(r)→0, ∥F l(x(s))−F l(x(t))∥2→ large. (28)

Therefore, high-frequency components (I −M) ⊙ F(x) encode domain-invariant semantic struc-
tures, while low-frequency components M ⊙ F(x) capture domain-specific styles. This theoretical
analysis explains why the high-frequency cues extracted in Eq.(3) are inherently more robust and
domain-invariant in practice.
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Algorithm 1: PRISM
Input : labeled base set Dl; streaming unlabeled sets {Du

t }Tt=1; model θ = {f, g}; mask ratio r; SAM
proximal strength ε; rank loss weight λ1

Output: updated model θ = {f, g}
1 /* --- High-Frequency-Driven Category Separation (HCS) --- */
2 Function HCS Split(Du

t , f, {e t−1
c }, r):

3 for x ∈ Du
t do

4 Compute Fourier spectrum F(x) with mask M ;
5 Extract high-frequency part xh;

6 S(x)← ν(maxc
⟨f(xh),et−1

c ⟩
∥f(xh)∥∥et−1

c ∥
)

7 end for
8 Fit 2-comp GMM on {S(x)} and get π(x);
9 Du

t,kno ← {x|π(x) ≥ 0.5}, Du
t,unk ← {x|π(x) < 0.5}

10 return Du
t,kno,Du

t,unk

11 /* --- Sparse Assignment Matching (SAM) --- */
12 Function SAM Assign(Du

t,kno, f, g, {e t−1
c }, ε):

13 Build cost Cij = − log(g(f(xi,kno))j);
14 Initialize γ(0)

ij ;
15 Solve dual (ψ,φ) and update γ until convergence;
16 ỹkno

i ← argmaxj γ
∗
ij

17 return {ỹkno
i }, γ∗

18 /* --- Invariant Knowledge Transfer (IKT) --- */
19 Function IKT RankLoss(Du

t,unk, f, {e t−1
c }):

20 Estimate low-frequency stats from prev. stage;
21 for x ∈ Du

t,unk do
22 Generate style-perturbed view x̂;
23 z = f(x), ẑ = f(x̂);
24 Compute PL dists P (P|κ), P (P|κ̂);
25 Accumulate ℓKL

26 end for
27 Lrank ← mean divergence
28 return Lrank

29 /* --- Affinity Propagation + Online Update --- */
30 Function AP Cluster(Du

t,unk, f):
31 Run Affinity Propagation on {f(x)};
32 return novel clusters {ŷunk},Kunk

33 Function Online Update(θ,Skno,Snov,Lrank, λ1):
34 Lce ← cross-entropy on pseudo + novel clusters;
35 Ltotal = Lce + λ1Lrank;
36 Update model θ = {f, g};
37 return θ = {f, g}, updated prototypes {e t

c}
38 /* --- Main Procedure --- */

39 Initialize θ = {f, g} and get known-class prototypes {e0c} on Dl

40 for t = 1 to T do
41 Du

t,kno,Du
t,unk ← HCS Split(Du

t , f, {et−1
c }, r)

42 {ỹkno
i }, γ∗ ← SAM Assign(Du

t,kno, f, g, {et−1
c }, ε)

43 Lrank ← IKT RankLoss(Du
t,unk, f, {et−1

c })
44 {ŷunk},Kunk ← AP Cluster(Du

t,unk, f)
45 Build pseudo-labeled sets Skno,Sunk;
46 θ, {etc} ← Online Update(θ,Skno,Sunk,Lrank, λ1)
47 end for
48 return updated model θ = {f, g}
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A.3 PSEUDOCODE

The pseudocode of PRISM, outlining its main components and training flow, is provided in Algo-
rithm 1.

A.4 DATASETS

To thoroughly evaluate the proposed framework under both domain shift and semantic shift con-
ditions, we conduct experiments on two widely used benchmarks: DomainNet (Peng et al., 2019)
and SSB-C (Wang et al., 2024a). These datasets encompass diverse visual domains and fine-grained
recognition challenges, thereby providing a rigorous test of generalization and robustness.

A.4.1 DOMAINNET

DomainNet (Peng et al., 2019) is among the largest benchmarks in domain adaptation and general-
ization, containing approximately 600,000 images across 345 categories. The dataset spans six het-
erogeneous domains with distinct visual styles: Real (photographic images), Clipart (cartoon-style
drawings), Sketch (hand-drawn sketches), Painting (artistic renderings such as oil and watercolor),
Infograph (symbolic infographic-like images), and Quickdraw (doodle-style drawings from Google
QuickDraw). The large scale and stylistic diversity introduce strong domain discrepancies, making
DomainNet a challenging testbed for algorithms aiming to learn domain-invariant yet discriminative
representations.

A.4.2 SSB-C

The SSB-C benchmark (Wang et al., 2024a) extends the Semantic Shift Benchmark (SSB) to explic-
itly measure robustness under semantic and distributional perturbations. The original SSB is built
from three fine-grained datasets: CUB-200-2011 (200 bird species with subtle inter-class variations),
Stanford Cars (196 categories covering a wide range of brands and models), and FGVC-Aircraft
(100 aircraft categories defined by structural differences). SSB-C introduces nine corruption types
(e.g., Gaussian noise, frost blur, impulse noise) applied at five severity levels, following the com-
mon corruption protocol. This produces a dataset that is nearly 45× larger than the original SSB,
offering a comprehensive benchmark for evaluating robustness in fine-grained recognition.

A.4.3 EVALUATION PROTOCOL

For each benchmark, a subset of categories is initially designated as labeled known classes to build
the first training session. In subsequent sessions, new categories are gradually introduced, simulat-
ing the progressive emergence of novel classes. Detailed statistics of category splits are presented in
Table 5, while the proportion of known and unknown samples across unseen domains is summarized
in Table 6. These staged splits emulate real-world deployment scenarios in which both novel cate-
gories and domain shifts arise over time. Methods are evaluated by their ability to simultaneously
recognize known classes and discover unknown ones, with particular emphasis on generalization
and semantic separability.

Table 7: Clustering results (mean ± std) on the DomainNet benchmark. The Real domain is treated
as the known domain, while each of the other domains serves in turn as the unknown domain. We
present the averaged accuracies on All / Old / New classes across all stages for both domains.

Real → Painting Real → Sketch Real → Quickdraw Real → Clipart Real → Infograph
Methods

Real Painting Real Sketch Real Quickdraw Real Clipart Real Infograph
All Old New All Old New All Old New All Old New All Old New All Old New All Old New All Old New All Old New All Old New

GCD 51.3 ± 2.2 67.2 ± 2.1 45.4 ± 1.7 27.4 ± 1.4 26.7 ± 1.9 28.1 ± 1.0 52.3 ± 1.0 65.7 ± 1.1 41.7 ± 1.8 9.2 ± 0.8 14.5 ± 1.1 10.1 ± 0.6 38.7 ± 2.0 56.2 ± 2.0 29.6 ± 1.0 5.0 ± 0.5 4.7 ± 0.4 5.8 ± 0.5 46.7 ± 2.0 65.7 ± 0.8 40.1 ± 1.0 14.5 ± 1.9 21.2 ± 1.6 10.1 ± 1.4 39.8 ± 2.1 55.3 ± 0.9 32.4 ± 1.3 8.1 ± 0.3 9.8 ± 1.0 6.4 ± 0.5
SimGCD 48.4 ± 1.7 63.9 ± 1.3 41.3 ± 1.1 22.6 ± 0.9 22.4 ± 1.3 23.5 ± 1.3 48.5 ± 1.9 60.2 ± 1.2 36.5 ± 0.9 7.2 ± 0.9 11.3 ± 1.5 9.2 ± 1.2 32.4 ± 1.6 50.3 ± 2.1 23.5 ± 1.4 4.2 ± 0.5 4.0 ± 0.3 5.1 ± 0.7 40.2 ± 1.9 58.8 ± 0.9 33.5 ± 1.7 10.3 ± 1.9 18.8 ± 1.4 8.2 ± 2.0 33.6 ± 1.5 49.2 ± 1.4 27.8 ± 1.3 6.7 ± 0.6 7.8 ± 0.2 5.2 ± 0.4
SPTNet 49.8 ± 1.9 64.5 ± 2.2 42.5 ± 1.2 24.1 ± 1.1 23.5 ± 1.0 24.3 ± 1.5 49.9 ± 1.3 62.3 ± 1.1 37.8 ± 1.3 7.9 ± 0.5 11.7 ± 1.8 9.6 ± 0.7 34.8 ± 0.9 52.6 ± 1.3 24.8 ± 1.3 4.9 ± 0.5 4.6 ± 0.5 5.5 ± 0.9 43.1 ± 1.7 60.3 ± 1.0 35.9 ± 1.3 11.6 ± 2.1 19.3 ± 1.2 8.9 ± 1.9 35.9 ± 1.2 51.4 ± 1.1 29.8 ± 1.0 7.2 ± 0.9 8.0 ± 0.5 5.9 ± 0.3
RLCD 50.8 ± 1.5 66.2 ± 2.2 44.1 ± 2.0 25.5 ± 1.8 24.6 ± 1.2 25.8 ± 1.2 51.2 ± 1.1 64.8 ± 2.1 40.1 ± 1.8 8.4 ± 0.9 12.1 ± 0.5 10.0 ± 0.3 36.1 ± 2.1 54.0 ± 1.3 25.7 ± 1.2 4.8 ± 0.2 4.7 ± 0.4 5.3 ± 0.7 45.2 ± 1.6 62.1 ± 1.4 36.9 ± 1.8 13.5 ± 1.2 20.9 ± 1.4 9.8 ± 1.5 37.1 ± 1.6 53.2 ± 2.0 32.5 ± 1.3 8.4 ± 0.7 8.9 ± 0.8 6.8 ± 0.6
G&M 47.1 ± 1.3 62.3 ± 2.2 41.2 ± 1.8 26.3 ± 0.9 25.5 ± 1.0 26.2 ± 1.2 50.9 ± 2.1 63.4 ± 0.8 42.3 ± 2.0 10.9 ± 0.7 15.1 ± 0.6 10.5 ± 0.8 34.1 ± 2.0 50.2 ± 1.5 27.3 ± 1.1 4.3 ± 0.3 4.1 ± 0.7 5.2 ± 0.4 40.3 ± 2.3 61.1 ± 1.3 34.2 ± 1.5 11.4 ± 1.8 19.2 ± 1.1 8.8 ± 1.7 32.4 ± 2.2 50.1 ± 2.1 27.6 ± 1.3 7.5 ± 0.5 9.2 ± 0.5 5.5 ± 0.8
PA-CGCD 55.4 ± 1.6 70.3 ± 1.1 48.1 ± 1.5 30.1 ± 1.4 30.8 ± 1.3 30.2 ± 1.3 55.1 ± 1.9 70.7 ± 1.6 46.6 ± 1.2 12.3 ± 0.7 16.1 ± 0.5 11.2 ± 0.8 43.6 ± 1.7 60.4 ± 1.9 34.2 ± 1.5 5.1 ± 0.4 5.0 ± 0.5 6.0 ± 0.6 52.2 ± 1.8 70.3 ± 1.3 44.6 ± 1.5 17.8 ± 1.8 24.5 ± 1.9 12.3 ± 1.3 45.2 ± 1.4 61.3 ± 1.2 38.1 ± 1.5 9.0 ± 0.3 11.8 ± 0.8 7.1 ± 0.4
DEAN 56.0 ± 1.2 71.7 ± 1.9 47.9 ± 2.0 32.8 ± 1.1 34.4 ± 1.4 31.5 ± 2.1 56.7 ± 2.0 71.5 ± 2.2 47.6 ± 1.5 12.9 ± 0.5 16.8 ± 0.9 11.2 ± 0.7 44.0 ± 2.1 61.0 ± 1.7 35.1 ± 2.1 5.3 ± 0.8 5.1 ± 0.6 6.2 ± 0.2 55.1 ± 2.2 72.7 ± 1.2 47.5 ± 2.2 20.3 ± 1.9 26.7 ± 1.5 15.0 ± 1.2 46.7 ± 1.7 62.3 ± 1.5 40.8 ± 1.4 9.5 ± 0.4 12.5 ± 0.6 7.9 ± 0.9
PromptCCD 56.5 ± 1.1 71.2 ± 1.7 50.3 ± 1.8 31.5 ± 1.5 32.1 ± 1.9 31.2 ± 1.4 57.4 ± 1.3 73.6 ± 1.5 48.6 ± 1.2 13.4 ± 0.8 17.7 ± 0.4 12.1 ± 1.0 45.2 ± 1.3 62.3 ± 1.6 36.7 ± 1.0 5.8 ± 0.3 5.1 ± 0.8 6.5 ± 0.3 54.1 ± 1.3 71.2 ± 1.1 46.7 ± 1.4 19.8 ± 1.5 26.1 ± 1.6 14.4 ± 1.4 47.1 ± 1.5 63.1 ± 1.3 40.2 ± 1.2 9.2 ± 0.3 12.2 ± 0.6 7.8 ± 0.5
VB-CGCD 57.3 ± 1.8 71.0 ± 1.2 52.4 ± 1.1 32.4 ± 2.2 33.6 ± 2.3 32.5 ± 2.1 56.9 ± 1.4 73.1 ± 1.1 48.8 ± 1.9 13.9 ± 0.6 18.1 ± 0.7 12.9 ± 0.6 47.1 ± 1.0 62.1 ± 2.2 38.1 ± 1.3 6.0 ± 0.5 4.9 ± 0.4 6.8 ± 0.7 55.4 ± 1.7 72.0 ± 1.2 47.5 ± 2.3 19.6 ± 2.0 25.8 ± 2.2 14.2 ± 2.2 48.3 ± 1.8 63.9 ± 2.2 41.9 ± 1.1 9.4 ± 0.3 12.4 ± 0.5 8.0 ± 0.4
PRISM 60.9 ± 1.5 74.1 ± 1.4 55.1 ± 2.1 39.2 ± 1.5 39.0 ± 1.4 38.2 ± 1.7 60.1 ± 1.2 73.4 ± 2.0 51.0 ± 1.1 16.9 ± 0.4 20.1 ± 0.8 15.9 ± 0.3 54.0 ± 1.0 74.0 ± 2.1 49.2 ± 1.9 7.1 ± 0.5 6.5 ± 0.4 7.4 ± 0.6 58.0 ± 1.5 72.3 ± 1.2 51.2 ± 2.1 24.0 ± 1.8 30.4 ± 1.4 19.1 ± 1.1 60.1 ± 1.4 73.8 ± 1.4 53.1 ± 1.9 10.9 ± 0.5 14.1 ± 0.5 9.8 ± 0.6

A.5 COMPREHENSIVE CLUSTERING EVALUATION

To assess both robustness and effectiveness, we perform extensive multi-stage clustering studies
on the SSB-C and DomainNet benchmarks. The summarized outcomes in Tables 7 and 8 report
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Table 8: Clustering results (mean ± std) on the SSB-C benchmarks. For each dataset, we evaluate
on both Original and Corrupted domains, reporting average accuracies over All, Old, and New
categories across different stages.

CUB-C Stanford Cars-C FGVC-Aircraft-CMethods Original Corrupted Original Corrupted Original Corrupted
All Old New All Old New All Old New All Old New All Old New All Old New

GCD 29.4 ± 1.4 47.7 ± 1.5 23.4 ± 1.5 26.8 ± 1.3 45.9 ± 1.5 20.1 ± 2.2 26.4 ± 1.0 56.1 ± 1.8 21.5 ± 1.7 22.3 ± 1.7 43.1 ± 1.0 11.2 ± 1.6 27.7 ± 1.0 33.6 ± 1.2 24.9 ± 2.1 28.8 ± 2.2 41.4 ± 1.4 28.8 ± 1.8
SimGCD 26.6 ± 1.5 44.5 ± 2.0 21.0 ± 2.1 23.4 ± 2.0 42.4 ± 1.9 17.7 ± 1.2 23.1 ± 1.6 52.5 ± 1.4 18.9 ± 1.1 19.3 ± 0.8 39.7 ± 2.2 9.8 ± 1.5 25.4 ± 2.1 30.1 ± 1.6 22.1 ± 2.3 25.2 ± 2.0 38.1 ± 1.0 25.8 ± 1.4
SPTNet 27.8 ± 2.3 45.2 ± 1.5 22.0 ± 1.8 25.1 ± 1.2 44.2 ± 1.2 18.1 ± 0.8 24.9 ± 1.7 55.0 ± 2.1 20.3 ± 1.3 21.1 ± 1.1 41.6 ± 2.0 9.9 ± 1.0 26.1 ± 1.7 31.2 ± 2.3 23.3 ± 1.2 26.9 ± 1.7 39.5 ± 1.6 26.7 ± 1.7
RLCD 29.1 ± 1.3 46.8 ± 1.1 23.8 ± 1.6 26.2 ± 1.4 45.3 ± 1.3 19.4 ± 1.0 26.8 ± 1.9 56.9 ± 1.6 22.1 ± 1.8 22.9 ± 1.4 43.2 ± 1.1 9.7 ± 1.7 27.8 ± 1.5 32.3 ± 1.0 24.2 ± 1.9 27.3 ± 1.4 40.7 ± 1.9 28.1 ± 1.4
G&M 16.4 ± 1.5 34.1 ± 1.3 10.5 ± 0.9 13.7 ± 2.1 32.1 ± 1.3 7.7 ± 1.5 15.7 ± 2.0 43.8 ± 1.9 12.3 ± 1.2 11.4 ± 1.7 30.5 ± 1.5 6.7 ± 2.1 20.5 ± 2.1 24.8 ± 0.8 17.9 ± 1.1 21.6 ± 2.1 32.7 ± 2.0 22.3 ± 1.3
PA-CGCD 28.3 ± 1.7 46.5 ± 1.6 22.7 ± 1.8 25.4 ± 1.2 44.7 ± 1.9 18.4 ± 1.6 25.2 ± 1.9 55.1 ± 2.2 20.9 ± 1.0 21.2 ± 1.1 41.5 ± 2.3 10.2 ± 1.2 26.4 ± 1.3 31.4 ± 1.7 23.7 ± 1.6 27.8 ± 2.2 40.1 ± 2.3 27.2 ± 1.2
DEAN 28.9 ± 1.2 47.1 ± 2.1 23.0 ± 1.1 26.3 ± 1.5 46.2 ± 2.3 18.2 ± 1.4 26.1 ± 1.7 58.1 ± 1.9 19.4 ± 0.9 22.1 ± 1.6 41.2 ± 1.2 12.9 ± 2.0 28.1 ± 1.3 32.8 ± 1.9 28.9 ± 1.7 29.1 ± 2.3 40.1 ± 2.2 30.3 ± 1.1
PromptCCD 30.1 ± 1.1 48.1 ± 1.3 24.5 ± 1.2 27.4 ± 1.6 46.1 ± 1.4 20.3 ± 1.5 27.4 ± 1.7 57.4 ± 2.0 22.1 ± 1.1 23.1 ± 1.6 44.4 ± 1.9 11.4 ± 1.3 29.9 ± 1.8 34.5 ± 1.2 26.4 ± 2.3 30.3 ± 1.7 42.9 ± 2.0 29.9 ± 1.3
VB-CGCD 34.2 ± 1.4 51.8 ± 1.3 26.3 ± 1.6 31.7 ± 1.1 49.2 ± 1.3 23.4 ± 1.4 31.6 ± 1.5 59.9 ± 1.8 26.1 ± 1.2 26.3 ± 1.5 47.9 ± 1.6 15.1 ± 1.0 33.2 ± 1.6 37.3 ± 1.2 29.7 ± 1.1 32.3 ± 1.9 44.5 ± 2.0 31.6 ± 1.8
PRISM 49.3 ± 1.2 64.9 ± 1.3 44.2 ± 1.3 44.0 ± 1.2 60.9 ± 1.5 37.0 ± 1.0 36.9 ± 1.5 60.0 ± 1.0 29.1 ± 1.4 33.3 ± 1.4 56.5 ± 1.0 23.5 ± 0.9 40.1 ± 1.1 48.9 ± 1.1 40.1 ± 1.4 36.4 ± 1.3 46.1 ± 1.4 34.1 ± 1.2

the overall performance with corresponding standard deviations (mean ± std), showing that our
approach consistently outperforms prior baselines in terms of accuracy and stability.

Table 9: Stage-wise clustering performance (%) of different methods on the DomainNet benchmark.
Results are reported for all categories (All), previously known categories (Old), and newly discov-
ered categories (New) at each incremental stage, along with the overall average.

Stage 1 Stage 2 Stage 3 Average Stage 1 Stage 2 Stage 3 Average
Methods

All Old New All Old New All Old New All Old New All Old New All Old New All Old New All Old New
Real → Painting

Real Painting

GCD 54.4 70.6 47.7 47.8 63.9 43.1 51.7 67.1 45.4 51.3 67.2 45.4 28.6 28.0 29.3 26.1 25.4 26.8 27.5 26.7 28.3 27.4 26.7 28.1
SimGCD 51.7 66.3 44.1 45.6 61.5 38.4 48.0 63.9 41.4 48.4 63.9 41.3 23.8 23.6 24.7 21.4 21.3 22.3 22.6 22.3 23.5 22.6 22.4 23.5
SPTNet 52.9 67.1 45.3 46.4 61.7 40.0 50.0 64.7 42.1 49.8 64.5 42.5 25.3 24.7 25.8 22.9 22.2 22.9 24.0 23.6 24.3 24.1 23.5 24.3
RLCD 53.3 69.4 46.6 48.5 63.2 41.4 50.7 66.0 44.3 50.8 66.2 44.1 26.7 25.8 27.0 24.2 23.3 24.6 25.6 24.7 25.8 25.5 24.6 25.8
G&M 50.0 66.1 45.0 44.5 58.6 37.4 46.9 62.2 41.2 47.1 62.3 41.2 27.7 26.6 27.3 24.9 24.4 25.1 26.4 25.5 26.2 26.3 25.5 26.2
PA-CGCD 58.1 73.6 50.8 52.8 67.3 45.2 55.3 70.0 48.3 55.4 70.3 48.1 31.3 32.0 31.5 28.8 29.5 29.0 30.2 31.0 30.1 30.1 30.8 30.2
DEAN 58.6 75.1 51.0 52.9 68.3 45.3 56.5 71.7 47.4 56.0 71.7 47.9 33.9 35.8 32.6 31.7 33.0 30.4 32.8 34.4 31.5 32.8 34.4 31.5
PromptCCD 59.1 74.6 53.8 53.9 67.9 47.1 56.5 71.1 50.0 56.5 71.2 50.3 32.7 33.4 32.5 30.2 30.8 29.9 31.6 32.1 31.2 31.5 32.1 31.2
VB-CGCD 60.3 73.1 54.9 54.4 68.8 49.5 57.2 71.1 52.8 57.3 71.0 52.4 33.6 34.9 33.8 31.2 32.4 31.2 32.4 33.5 32.6 32.4 33.6 32.5
PRISM 63.3 76.6 58.9 58.6 71.7 51.4 60.8 74.0 55.0 60.9 74.1 55.1 40.6 40.3 39.6 37.8 37.8 36.9 39.2 38.9 38.1 39.2 39.0 38.2

Real → Sketch
Real Sketch

GCD 55.4 69.1 44.0 48.8 62.4 39.4 52.7 65.6 41.7 52.3 65.7 41.7 10.4 15.8 11.3 7.9 13.2 8.8 9.3 14.5 10.3 9.2 14.5 10.1
SimGCD 51.8 62.6 39.3 45.7 57.8 33.6 48.1 60.2 36.6 48.5 60.2 36.5 8.4 12.5 10.4 6.0 10.2 8.0 7.2 11.2 9.2 7.2 11.3 9.2
SPTNet 53.0 64.9 40.6 46.5 59.5 35.3 50.1 62.5 37.4 49.9 62.3 37.8 9.1 12.9 11.1 6.7 10.4 8.2 7.8 11.8 9.6 7.9 11.7 9.6
RLCD 53.7 68.0 42.6 48.9 61.8 37.4 51.1 64.6 40.3 51.2 64.8 40.1 9.6 13.3 11.2 7.1 10.8 8.8 8.5 12.2 10.0 8.4 12.1 10.0
G&M 51.8 67.2 46.1 46.3 59.7 38.5 48.7 63.3 42.3 48.9 63.4 42.3 12.3 16.2 11.6 9.5 14.0 9.4 11.0 15.1 10.5 10.9 15.1 10.5
PA-CGCD 57.8 74.0 49.3 52.5 67.7 43.7 55.0 70.4 46.8 55.1 70.7 46.6 13.5 17.3 12.5 11.0 14.8 10.0 12.4 16.3 11.1 12.3 16.1 11.2
DEAN 59.3 74.9 50.7 53.6 68.1 45.0 57.2 71.5 47.1 56.7 71.5 47.6 14.0 18.2 12.3 11.8 15.4 10.1 12.9 16.8 11.2 12.9 16.8 11.2
PromptCCD 60.0 77.0 52.1 54.8 70.3 45.4 57.4 73.5 48.3 57.4 73.6 48.6 14.6 19.0 13.4 12.1 16.4 10.8 13.5 17.7 12.1 13.4 17.7 12.1
VB-CGCD 59.9 75.2 51.3 54.0 70.9 45.9 56.8 73.2 49.2 56.9 73.1 48.8 15.1 19.4 14.2 12.7 16.9 11.6 13.9 18.0 13.0 13.9 18.1 12.9
PRISM 62.5 75.9 54.8 57.8 71.0 47.3 60.0 73.3 50.9 60.1 73.4 51.0 18.3 21.4 17.3 15.5 18.9 14.6 16.9 20.0 15.8 16.9 20.1 15.9

Real → Quickdraw
Real Quickdraw

GCD 41.8 59.6 31.9 39.1 56.1 29.6 35.2 52.9 27.3 38.7 56.2 29.6 6.2 6.0 7.0 5.1 4.7 6.0 3.7 3.4 4.5 5.0 4.7 5.8
SimGCD 35.7 52.7 26.3 32.0 50.3 23.6 29.6 47.9 20.6 32.4 50.3 23.5 5.4 5.2 6.3 4.2 3.9 5.1 3.0 2.9 3.9 4.2 4.0 5.1
SPTNet 37.9 55.2 27.6 35.0 52.8 24.4 31.4 49.8 22.3 34.8 52.6 24.8 6.1 5.8 7.0 4.8 4.7 5.5 3.7 3.3 4.1 4.9 4.6 5.5
RLCD 38.6 57.2 28.2 36.0 53.8 25.9 33.8 51.0 23.0 36.1 54.0 25.7 6.0 5.9 6.5 4.9 4.8 5.3 3.5 3.4 4.1 4.8 4.7 5.3
G&M 37.0 54.0 31.1 33.9 50.1 27.3 31.5 46.5 23.5 34.1 50.2 27.3 4.9 5.2 6.3 3.6 4.1 5.2 2.1 3.0 4.1 3.5 4.1 5.2
PA-CGCD 46.3 63.7 36.9 43.5 60.1 34.4 41.0 57.4 31.3 43.6 60.4 34.2 6.3 6.2 7.3 5.2 5.2 5.9 3.8 3.7 4.8 5.1 5.0 6.0
DEAN 46.6 64.4 38.2 44.5 61.0 34.6 40.9 57.6 32.5 44.0 61.0 35.1 6.2 6.4 7.2 5.1 5.0 6.1 4.0 3.6 5.0 5.1 5.0 6.1
PromptCCD 47.8 65.7 40.2 45.2 62.2 36.4 42.6 59.0 33.5 45.2 62.3 36.7 7.0 6.4 7.8 5.9 5.1 6.5 4.5 3.8 5.2 5.8 5.1 6.5
VB-CGCD 50.1 64.2 40.6 47.0 62.2 38.5 44.2 59.9 35.2 47.1 62.1 38.1 6.8 6.2 7.4 5.6 4.8 6.2 4.4 3.7 4.8 5.6 4.9 6.1
PRISM 56.4 76.5 53.0 53.9 73.9 49.1 51.7 71.6 45.5 54.0 74.0 49.2 8.5 7.8 8.8 7.1 6.4 7.3 5.7 5.3 6.1 7.1 6.5 7.4

Real → Clipart
Real Clipart

GCD 49.8 69.1 42.4 43.2 62.4 37.8 47.1 65.6 40.1 46.7 65.7 40.1 15.7 22.5 11.3 13.2 19.9 8.8 14.6 21.2 10.3 14.5 21.2 10.1
SimGCD 43.5 61.2 36.3 37.4 56.4 30.6 39.8 58.8 33.6 40.2 58.8 33.5 11.5 20.0 9.4 9.1 17.7 7.0 10.3 18.7 8.2 10.3 18.8 8.2
SPTNet 46.2 62.9 38.7 39.7 57.5 33.4 43.3 60.5 35.5 43.1 60.3 35.9 12.8 20.5 10.4 10.4 18.0 7.5 11.5 19.4 8.9 11.6 19.3 8.9
RLCD 47.7 65.3 39.4 42.9 59.1 34.2 45.1 61.9 37.1 45.2 62.1 36.9 14.7 22.1 11.0 12.2 19.6 8.6 13.6 21.0 9.8 13.5 20.9 9.8
G&M 43.2 64.9 38.0 37.7 57.4 30.4 40.1 61.0 34.2 40.3 61.1 34.2 13.7 20.3 9.9 10.9 18.1 7.7 12.4 19.2 8.8 12.3 19.2 8.8
PA-CGCD 54.9 73.6 47.3 49.6 67.3 41.7 52.1 70.0 44.8 52.2 70.3 44.6 19.0 25.7 13.6 16.5 23.2 11.1 17.9 24.7 12.2 17.8 24.5 12.3
DEAN 57.7 76.1 50.6 52.0 69.3 44.9 55.6 72.7 47.0 55.1 72.7 47.5 21.4 28.1 16.1 19.2 25.3 13.9 20.3 26.7 15.0 20.3 26.7 15.0
PromptCCD 56.7 74.6 50.2 51.5 67.9 43.5 54.1 71.1 46.4 54.1 71.2 46.7 21.0 27.4 15.7 18.5 24.8 13.1 19.9 26.1 14.4 19.8 26.1 14.4
VB-CGCD 58.4 74.1 50.0 52.5 69.8 44.6 55.3 72.1 47.9 55.4 72.0 47.5 20.8 27.1 15.5 18.4 24.6 12.9 19.6 25.7 14.3 19.6 25.8 14.2
PRISM 60.4 74.8 55.0 55.7 69.9 47.5 57.9 72.2 51.1 58.0 72.3 51.2 25.4 31.7 20.5 22.6 29.2 17.8 24.0 30.3 19.0 24.0 30.4 19.1

Real → Infograph
Real Infograph

GCD 42.9 58.7 34.7 40.2 55.2 32.4 36.3 52.0 30.1 39.8 55.3 32.4 9.3 11.1 7.6 8.2 9.8 6.6 6.8 8.5 5.1 8.1 9.8 6.4
SimGCD 36.9 51.6 30.6 33.2 49.2 27.9 30.8 46.8 24.9 33.6 49.2 27.8 7.9 9.0 6.4 6.7 7.7 5.2 5.5 6.7 4.0 6.7 7.8 5.2
SPTNet 39.0 54.0 32.6 36.1 51.6 29.4 32.5 48.6 27.3 35.9 51.4 29.8 8.4 9.2 7.4 7.1 8.1 5.9 6.0 6.7 4.5 7.2 8.0 5.9
RLCD 39.6 56.4 35.0 37.0 53.0 32.7 34.8 50.2 29.8 37.1 53.2 32.5 9.6 10.1 8.0 8.5 9.0 6.8 7.1 7.6 5.6 8.4 8.9 6.8
G&M 35.3 53.9 31.4 32.2 50.0 27.6 29.8 46.4 23.8 32.4 50.1 27.6 8.9 10.3 6.6 7.6 9.2 5.5 6.1 8.1 4.4 7.5 9.2 5.5
PA-CGCD 47.9 64.6 40.8 45.1 61.0 38.3 42.6 58.3 35.2 45.2 61.3 38.1 10.2 13.0 8.4 9.1 12.0 7.0 7.7 10.5 5.9 9.0 11.8 7.1
DEAN 49.3 65.7 43.9 47.2 62.3 40.3 43.6 58.9 38.2 46.7 62.3 40.8 10.6 13.9 9.0 9.5 12.5 7.9 8.4 11.1 6.8 9.5 12.5 7.9
PromptCCD 49.7 66.5 43.7 47.1 63.0 39.9 44.5 59.8 37.0 47.1 63.1 40.2 10.4 13.5 9.1 9.3 12.2 7.8 7.9 10.9 6.5 9.2 12.2 7.8
VB-CGCD 51.3 66.0 44.4 48.2 64.0 42.3 45.4 61.7 39.0 48.3 63.9 41.9 10.6 13.7 9.3 9.4 12.3 8.1 8.2 11.2 6.7 9.4 12.4 8.0
PRISM 62.5 76.3 56.9 60.0 73.7 53.0 57.8 71.4 49.4 60.1 73.8 53.1 12.3 15.4 11.2 10.9 14.0 9.7 9.5 12.9 8.5 10.9 14.1 9.8

In addition, a fine-grained analysis of stage-by-stage performance is provided in Tables 9 and 10.
These results include clustering accuracy (%) on All, Old, and New categories across incremental
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Table 10: Stage-wise clustering accuracy (%) of all methods on FGVC-Aircraft-C, Stanford Cars-C,
and CUB-C datasets. We report the accuracy on all classes (All), known classes (Old), and novel
classes (New) at each incremental stage, as well as the average.

Stage 1 Stage 2 Stage 3 Average Stage 1 Stage 2 Stage 3 Average
Methods

All Old New All Old New All Old New All Old New All Old New All Old New All Old New All Old New
FGVC-Aircraft-C

Original Corrupted

GCD 30.8 37.0 27.2 24.2 30.3 22.6 28.1 33.5 24.9 27.7 33.6 24.9 30.0 42.7 30.0 27.5 40.1 27.5 28.9 41.4 29.0 28.8 41.4 28.8
SimGCD 28.7 32.5 24.9 22.6 27.7 19.2 25.0 30.1 22.2 25.4 30.1 22.1 26.4 39.3 27.0 24.0 37.0 24.6 25.2 38.0 25.8 25.2 38.1 25.8
SPTNet 29.2 33.8 26.1 22.7 28.4 20.8 26.3 31.4 22.9 26.1 31.2 23.3 28.1 40.7 28.2 25.7 38.2 25.3 26.8 39.6 26.7 26.9 39.5 26.7
RLCD 30.3 35.5 26.7 25.5 29.3 21.5 27.7 32.1 24.4 27.8 32.3 24.2 29.0 41.9 29.3 26.5 39.4 26.9 27.9 40.8 28.1 27.8 40.7 28.1
G&M 23.4 28.6 21.7 17.9 21.1 14.1 20.3 24.7 17.9 20.5 24.8 17.9 23.0 33.8 23.4 20.2 31.6 21.2 21.7 32.7 22.3 21.6 32.7 22.3
PA-CGCD 29.1 34.7 26.4 23.8 28.4 20.8 26.3 31.1 23.9 26.4 31.4 23.7 29.0 41.3 28.5 26.5 38.8 26.0 27.9 40.3 27.1 27.8 40.1 27.2
DEAN 30.7 36.2 32.0 25.0 29.4 26.3 28.6 32.8 28.4 28.1 32.8 28.9 30.2 41.5 31.4 28.0 38.7 29.2 29.1 40.1 30.3 29.1 40.1 30.3
PromptCCD 32.5 37.9 29.9 27.3 31.2 23.2 29.9 34.4 26.1 29.9 34.5 26.4 31.5 44.2 31.2 29.0 41.6 28.6 30.4 42.9 29.9 30.3 42.9 29.9
VB-CGCD 36.2 39.4 32.2 30.3 35.1 26.8 33.1 37.4 30.1 33.2 37.3 29.7 33.5 45.8 32.9 31.1 43.3 30.3 32.3 44.4 31.7 32.3 44.5 31.6
PRISM 42.5 51.4 43.9 37.8 46.5 36.4 40.0 48.8 40.0 40.1 48.9 40.1 37.8 47.4 35.5 35.0 44.9 32.8 36.4 46.0 34.0 36.4 46.1 34.1

Stanford Cars-C
Original Corrupted

GCD 29.5 59.5 23.8 26.8 56.0 21.5 22.9 52.8 19.2 26.4 56.1 21.5 23.5 44.4 12.4 22.4 43.1 11.4 21.0 41.8 9.9 22.3 43.1 11.2
SimGCD 26.4 54.9 21.7 22.7 52.5 19.0 20.3 50.1 16.0 23.1 52.5 18.9 20.5 40.9 11.0 19.3 39.6 9.8 18.1 38.6 8.6 19.3 39.7 9.8
SPTNet 28.0 57.6 23.1 25.1 55.2 19.9 21.5 52.2 17.8 24.9 55.0 20.3 22.3 42.8 11.4 21.0 41.7 9.9 19.9 40.3 8.5 21.1 41.6 9.9
RLCD 28.7 60.1 24.6 26.1 56.7 22.3 23.9 53.9 19.4 26.2 56.9 22.1 24.1 44.4 10.9 23.0 43.3 9.7 21.6 41.9 8.5 22.9 43.2 9.7
G&M 18.6 47.6 16.1 15.5 43.7 12.3 13.1 40.1 8.5 15.7 43.8 12.3 12.8 31.6 7.8 11.5 30.5 6.7 10.0 29.4 5.6 11.4 30.5 6.7
PA-CGCD 27.9 58.4 23.6 25.1 54.8 21.1 22.6 52.1 18.0 25.2 55.1 20.9 22.4 42.7 11.5 21.3 41.7 10.1 19.9 40.2 9.0 21.2 41.5 10.2
DEAN 28.7 61.5 22.5 26.6 58.1 18.9 23.0 54.7 16.8 26.1 58.1 19.4 23.2 42.6 14.0 22.1 41.2 12.9 21.0 39.8 11.8 22.1 41.2 12.9
PromptCCD 30.0 60.8 25.6 27.4 57.3 21.8 24.8 54.1 18.9 27.4 57.4 22.1 24.3 45.7 12.7 23.2 44.4 11.4 21.8 43.1 10.1 23.1 44.4 11.4
VB-CGCD 34.6 62.0 28.6 31.5 60.0 26.5 28.7 57.7 23.2 31.6 59.9 26.1 27.5 49.2 16.4 26.3 47.8 15.2 25.1 46.7 13.8 26.3 47.9 15.1
PRISM 39.3 62.5 32.9 36.8 59.9 29.0 34.6 57.6 25.4 36.9 60.0 29.1 34.7 57.8 24.9 33.3 56.4 23.4 31.9 55.3 22.2 33.3 56.5 23.5

CUB-C
Original Corrupted

GCD 32.5 51.1 25.7 25.9 44.4 21.1 29.8 47.6 23.4 29.4 47.7 23.4 28.0 47.2 21.3 25.5 44.6 18.8 26.9 45.9 20.3 26.8 45.9 20.1
SimGCD 29.9 46.9 23.8 23.8 42.1 18.1 26.2 44.5 21.1 26.6 44.5 21.0 24.6 43.6 18.9 22.2 41.3 16.5 23.4 42.3 17.7 23.4 42.4 17.7
SPTNet 30.9 47.8 24.8 24.4 42.4 19.5 28.0 45.4 21.6 27.8 45.2 22.0 26.3 45.4 19.6 23.9 42.9 16.7 25.0 44.3 18.1 25.1 44.2 18.1
RLCD 31.6 50.0 26.3 26.8 43.8 21.1 29.0 46.6 24.0 29.1 46.8 23.8 28.4 46.5 20.6 25.9 44.0 18.2 27.3 45.4 19.4 27.2 45.3 19.4
G&M 19.3 37.9 14.3 13.8 30.4 6.7 16.2 34.0 10.5 16.4 34.1 10.5 15.1 33.2 8.8 12.3 31.0 6.6 13.8 32.1 7.7 13.7 32.1 7.7
PA-CGCD 31.0 49.8 25.4 25.7 43.5 19.8 28.2 46.2 22.9 28.3 46.5 22.7 26.6 45.9 19.7 24.1 43.4 17.2 25.5 44.9 18.3 25.4 44.7 18.4
DEAN 31.5 50.5 26.1 25.8 43.7 20.4 29.4 47.1 22.5 28.9 47.1 23.0 27.4 47.6 19.3 25.2 44.8 17.1 26.3 46.2 18.2 26.3 46.2 18.2
PromptCCD 32.7 51.5 28.0 27.5 44.8 21.3 30.1 48.0 24.2 30.1 48.1 24.5 28.6 47.4 21.6 26.1 44.8 19.0 27.5 46.1 20.3 27.4 46.1 20.3
VB-CGCD 37.2 53.9 28.8 31.3 49.6 23.4 34.1 51.9 26.7 34.2 51.8 26.3 32.9 50.5 24.7 30.5 48.0 22.1 31.7 49.1 23.5 31.7 49.2 23.4
PRISM 51.7 67.4 48.0 47.0 62.5 40.5 49.2 64.8 44.1 49.3 64.9 44.2 45.4 62.2 38.4 42.6 59.7 35.7 44.0 60.8 36.9 44.0 60.9 37.0

stages, as well as the overall averages. Table 9 focuses on the DomainNet benchmark under different
domain shift scenarios, whereas Table 10 presents evaluations on FGVC-Aircraft-C, Stanford Cars-
C, and CUB-C. Such detailed investigations further highlight the strength of our method in reliably
identifying novel categories under both distributional changes and sequential learning settings.

Figure 4: Attention heatmaps from the final ViT layer on the CUB-C benchmark. Red indicates the
top 10% patches with the highest attention weights across multiple heads. Compared to background
patterns, our model maintains a stronger focus on semantic object areas in both known and unknown
domains, highlighting resilience to appearance variations.
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A.6 ATTENTION MAP VISUALIZATION

To further probe how our model performs spatial reasoning, we inspect the attention distributions
of the last transformer block, focusing on the relationship between the [CLS] token and the indi-
vidual patch tokens across different heads. For each sample, we calculate the attention weights and
highlight in red the top 10% regions receiving the strongest responses, thereby revealing the areas
the model regards as most informative. Figure 4 illustrates representative visualizations from both
source and target domains, including examples from seen as well as novel categories. Regardless
of the data setting, our method consistently emphasizes semantically meaningful parts of the ob-
ject, rather than being distracted by superficial appearance differences or domain-specific artifacts.
This indicates that the learned attention patterns capture object-level semantics in a stable manner.
Such consistency in attention allocation underscores the model’s ability to filter out irrelevant back-
ground details and concentrate on discriminative structures. By anchoring the focus on task-relevant
cues, the representations acquired by our framework generalize better across domains and facilitate
reliable discovery of novel categories.

Table 11: Clustering performance of other DA methods.

Real Painting
Method

All Old New All Old New

UOL 55.1 69.0 45.6 29.0 29.3 27.6
Mixstyle 53.2 67.1 44.0 26.0 25.2 25.1
cUADAL 55.7 70.1 46.4 29.9 28.8 26.3
ANNA 54.8 68.4 48.7 30.7 28.9 26.8
PRISM 60.9 74.1 55.1 39.2 39.0 38.2

A.7 INTEGRATING CONTEMPORARY DOMAIN ADAPTATION METHODS FOR OW-CCD

To further investigate whether the challenges of OW-CCD can be addressed by existing techniques,
we directly applied several contemporary domain adaptation (DA) methods, including Mixstyle (Xu
et al., 2020), class-unknown adversarial adaptation (cUADAL) (Jang et al., 2022), unknown-oriented
learning (UOL) (Liu et al., 2022), and the adjustment-and-alignment approach (ANNA) (Li et al.,
2023b). The results, summarized in Table 11, show that these methods bring only limited improve-
ments and sometimes even lead to negative transfer, as they focus on distribution alignment but lack
the ability to robustly discover novel categories. In contrast, our proposed method consistently out-
performs these DA baselines across all benchmarks. The results underscore two key insights: (1)
addressing OW-CCD requires going beyond simple domain alignment, by explicitly modeling the
interplay between known and unknown categories under evolving distributions; and (2) the proposed
design provides a more principled solution tailored for OW-CCD. Taken together, these findings val-
idate the necessity of customizing algorithms for OW-CCD, rather than relying on direct adaptations
of existing DA methods.

Table 12: Clustering performance on SSB-C benchmarks using DINOv2 as the backbone. Each
dataset includes both Original and Corrupted settings, and we report the average All / Old / New
accuracy across all stages for both domains.

CUB-C Stanford Cars-C FGVC-Aircraft-CMethods Original Corrupted Original Corrupted Original Corrupted
All Old New All Old New All Old New All Old New All Old New All Old New

GCD 41.2 55.6 34.9 38.5 53.9 31.5 46.3 65.4 43.4 42.3 53.7 32.3 38.1 39.8 36.1 39.4 49.3 40.4
SimGCD 39.3 52.4 33.6 35.3 51.4 30.5 42.5 63.3 41.0 39.5 50.0 30.9 36.1 37.4 34.1 36.1 44.2 34.7
SPTNet 40.5 52.4 34.3 36.9 51.5 30.6 45.0 64.5 41.4 40.4 51.7 32.1 36.0 36.9 31.3 37.8 48.4 36.4
RLCD 42.4 54.3 35.6 38.3 53.4 32.3 47.1 65.9 43.1 42.1 53.1 34.3 37.8 38.1 33.8 39.3 50.1 38.2
G&M 28.2 42.6 22.4 25.3 39.3 20.7 36.1 52.8 34.6 30.9 41.0 29.5 31.4 30.9 28.6 31.8 40.3 31.7
PA-CGCD 40.9 53.8 35.2 38.0 53.2 31.1 45.2 65.6 43.1 40.1 51.6 31.3 38.3 40.2 35.0 37.0 45.7 37.3
DEAN 41.7 54.5 35.5 37.8 53.6 29.6 45.8 67.4 41.7 41.7 50.8 35.7 40.0 40.2 38.1 38.8 45.6 41.1
PromptCCD 42.7 55.6 36.0 39.1 54.3 33.2 48.4 67.8 43.7 43.3 53.7 34.1 40.4 42.4 35.9 40.0 48.3 41.0
VB-CGCD 43.1 56.2 38.1 40.7 55.9 35.9 50.5 68.9 45.7 45.4 56.1 35.3 42.3 43.6 37.8 41.8 49.8 42.5
PRISM 63.1 73.8 54.9 56.4 71.1 49.8 56.8 68.8 50.1 53.5 67.3 43.2 50.7 56.4 50.1 46.3 51.1 44.7

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 13: Clustering performance under the setting where multiple domains are treated as unknown.
Specifically, we construct the unknown set by combining the five domains from DomainNet except
for the Real domain, and report clustering accuracy separately for each domain.

Real Painting Sketch Quickdraw Clipart Infograph
Methods

All Old New All Old New All Old New All Old New All Old New All Old New

GCD 50.9 66.7 44.9 26.9 26.3 27.7 8.8 14.0 9.6 4.7 2.3 3.6 12.2 20.8 9.7 7.6 9.4 6.0
SimGCD 48.0 63.5 40.8 22.1 22.1 23.2 6.7 10.9 8.9 3.7 1.6 2.7 8.0 18.3 7.8 6.4 7.4 4.8
SPTNet 49.4 64.1 42.1 23.7 23.2 24.0 7.6 11.2 9.2 4.5 2.4 3.0 10.3 18.9 8.5 6.9 7.5 5.5
RLCD 50.5 65.1 43.2 25.0 24.9 25.1 8.1 11.9 10.1 4.3 2.2 2.9 10.6 19.2 8.9 7.2 8.0 5.6
G&M 46.7 61.9 40.8 25.9 25.1 25.8 10.5 14.7 10.2 3.9 1.8 2.8 10.1 18.7 8.4 7.1 8.7 5.1
PA-CGCD 55.0 69.9 47.6 29.6 30.4 29.7 11.9 15.7 10.8 4.8 2.5 3.7 15.4 24.1 12.0 8.6 11.4 6.8
DEAN 55.5 71.2 47.5 32.3 33.9 31.1 12.5 16.4 10.8 5.0 2.6 3.9 18.0 26.3 14.6 9.1 12.9 7.4
PromptCCD 56.2 70.7 49.8 31.1 31.8 30.8 13.0 17.3 11.7 5.3 2.7 4.2 17.6 25.8 14.0 8.8 11.8 7.4
VB-CGCD 57.1 71.4 50.3 31.9 32.4 31.7 13.9 18.0 12.4 5.7 3.2 5.1 18.2 26.7 15.1 9.3 12.5 8.2
PRISM 60.4 73.0 54.8 38.8 39.6 37.8 15.8 19.5 14.9 6.9 5.0 4.9 21.9 29.8 19.3 10.9 12.6 9.3

Table 14: Clustering results on the DomainNet benchmark with extended-stage online discovery. We
consider Real as the known domain, while each remaining domain is treated as unknown. Scores
are averaged across all stages (including the 4-stage extension) and reported in terms of All / Old /
New accuracy for each domain pair.

Real → Painting Real → Sketch Real → Quickdraw Real → Clipart Real → Infograph
Methods

Real Painting Real Sketch Real Quickdraw Real Clipart Real Infograph
All Old New All Old New All Old New All Old New All Old New All Old New All Old New All Old New All Old New All Old New

GCD 50.9 66.8 44.9 27.8 27.2 28.5 52.8 66.3 42.2 8.7 13.9 9.7 38.1 55.9 29.2 5.4 5.3 6.3 47.0 66.2 40.6 13.9 20.7 9.5 39.4 55.0 31.9 8.6 10.2 6.8
SimGCD 47.9 63.5 40.8 22.9 23.0 24.0 49.0 60.5 36.9 6.7 10.9 8.7 32.1 49.8 23.2 4.5 4.5 5.6 40.6 59.3 34.1 9.7 18.4 7.8 33.1 48.8 27.3 7.1 8.2 5.7
SPTNet 49.3 64.1 42.0 24.5 23.9 24.9 50.4 62.8 38.3 7.6 11.1 9.3 34.3 52.3 24.4 5.3 5.0 6.0 43.4 60.6 36.2 11.1 19.0 8.4 35.4 50.9 29.3 7.5 8.5 6.5
RLCD 49.9 64.8 42.7 25.0 24.3 25.1 51.0 63.3 38.9 8.4 11.9 10.0 35.0 53.1 24.9 5.4 5.1 6.2 43.9 61.2 36.7 12.3 19.2 8.6 35.7 51.2 29.9 7.8 8.9 6.7
G&M 46.7 62.0 40.8 26.7 26.1 26.7 52.3 63.8 42.9 10.5 14.6 10.2 33.6 49.8 26.9 4.8 4.7 5.7 40.8 61.5 34.8 11.8 18.7 8.5 31.9 49.7 27.1 7.9 9.8 5.9
PA-CGCD 55.1 70.0 47.7 30.4 31.3 30.6 55.7 71.1 47.1 11.7 15.6 10.8 43.0 59.9 33.7 5.6 5.3 6.5 52.6 74.8 42.1 17.2 24.1 12.0 44.6 61.0 37.5 9.4 12.3 7.7
DEAN 55.6 71.2 47.6 33.2 34.9 31.9 57.1 72.0 48.2 12.4 16.4 10.6 43.0 60.1 33.7 5.6 5.4 6.6 55.7 73.3 48.0 19.9 26.3 14.7 46.2 62.0 40.3 10.1 14.5 7.4
PromptCCD 56.1 70.8 49.9 31.9 32.6 31.7 58.0 73.9 49.2 13.1 17.4 11.7 44.7 61.9 36.3 6.2 5.5 7.0 54.7 71.5 47.0 19.4 25.5 14.0 46.7 62.6 39.7 9.7 12.6 8.2
VB-CGCD 57.0 71.2 50.3 32.1 33.4 32.4 58.7 74.3 49.9 13.8 18.0 12.1 45.1 62.7 36.9 6.9 5.8 7.3 55.1 72.0 47.7 19.9 26.1 14.6 47.3 63.2 40.1 10.0 12.9 8.8
PRISM 60.8 73.9 54.5 40.1 38.5 39.5 60.7 73.3 52.1 16.3 19.7 15.3 53.3 73.1 48.4 7.3 6.4 7.6 57.7 72.8 51.9 23.4 29.0 18.8 59.1 74.5 50.8 11.8 13.2 10.0

A.8 EMPIRICAL STUDY WITH DINOV2 BACKBONE

To further assess the robustness and effectiveness of our proposed framework, we conduct additional
experiments using a stronger pretrained backbone, DINOv2, which has recently demonstrated su-
perior representation learning ability in various vision tasks. As shown in Table 12, upgrading the
backbone to DINOv2 consistently boosts the performance of all compared algorithms across differ-
ent benchmarks. This confirms that stronger feature extractors can provide more transferable and
discriminative representations for the OW-CCD tasks.

More importantly, under this enhanced backbone setting, our proposed method still achieves the best
overall performance and maintains a clear margin over state-of-the-art baselines. This demonstrates
that the improvements brought by our framework are orthogonal to backbone advances, and our
method continues to deliver substantial gains even when combined with powerful feature extractors.
These results highlight the scalability and practical value of our framework when deployed with
next-generation backbones such as DINOv2.

A.9 EVALUATION UNDER MULTIPLE UNKNOWN DOMAINS

To further assess the robustness and practicality of our framework in more complex real-world sce-
narios, we conduct an additional experiment under a mixed-domain setting. On the DomainNet
benchmark, we treat the Real domain as the known domain and merge all the remaining domains
(Clipart, Painting, Sketch, and Infograph) into a single unknown domain. Compared
with single-domain shifts, this mixed-domain setting introduces much greater diversity in both visual
styles and semantic structures, making continual category discovery significantly more challenging.

As shown in Table 13, our method consistently outperforms state-of-the-art baselines across all met-
rics. In particular, we observe notable improvements on novel category discovery, indicating that
the proposed approach remains effective even when the unlabeled data come from multiple hetero-
geneous domains. These results suggest that our framework generalizes well to realistic scenarios
where unlabeled streams are inherently multi-sourced and non-stationary.
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Figure 5: Comparison of different separation strategies.

A.10 EVALUATION UNDER MORE-STAGE SETTING

In our main evaluation, we design the online discovery task under a three-phase setting to verify the
effectiveness of the proposed framework. To further examine its robustness and scalability under
more demanding conditions, we additionally explore a four-phase scenario, where novel categories
emerge in a slower and more fragmented manner.

As shown in Table 14, our approach consistently surpasses competitive baselines across all evalua-
tion metrics and category partitions (All, Old, New). These results highlight the framework’s ability
to cope with increasingly incremental category arrivals, confirming its adaptability to dynamic and
extended discovery processes.

A.11 PARAMETER SENSITIVITY ANALYSIS

We further investigate how our method behaves under variations of the loss balancing coefficient λ1,
with results shown in Figure 6 (a)–(b) and (g)–(h). Experiments are conducted on both DomainNet
and CUB-C. For DomainNet, the Real domain is treated as the known domain and the Painting do-
main as the unknown domain. For CUB-C, we follow the same protocol by designating the Original
domain as the known domain and the Corrupted domain as the unknown domain. By adjusting
λ1, we measure clustering accuracy on all, old, and novel categories within both domains. A clear
performance drop is observed when this coefficient is set to zero, highlighting the indispensability
of the IKT module. This component aligns listwise ranking distributions between unknown sam-
ples and known prototypes before and after spectral perturbation, thereby mitigating spurious style
effects and retaining transferable semantic knowledge. More importantly, across a wide range of λ1
values, the accuracy remains consistently high, indicating that our approach is largely insensitive to
this parameter and thus robust against hyperparameter tuning.

The mask ratio r regulates the binary mask M used to split an image into low- and high-frequency
parts, controlling their relative contribution. In our design, high-frequency signals guide the separa-
tion of known and novel categories, while low-frequency content is perturbed within the IKT mod-
ule to encourage transferability. As presented in Figure 6 (c)–(d) and (i)–(j), performance peaks at
r = 0.3, which we adopt as the default setting in all experiments unless stated otherwise. Increasing
r allows the model to exploit richer semantic cues from high-frequency components and enhances
robustness of the IKT module by perturbing a broader spectrum of low-frequency information. Nev-
ertheless, when r becomes excessively large, the model suffers from limited high-frequency cues for
separation and over-distortion of semantics within the IKT module, which together harm discrimi-
native ability.

We further conduct a parameter sensitivity analysis on the proximal strength coefficient ε in the
SAM module. Specifically, we perform experiments on the Real → Painting domain adaptation sce-
nario, varying ε within the range {0.0, 0.01, 0.05, 0.1, 0.5, 1, 10}. As shown in Figure 6 (e)–(f) and
(k)–(l), the performance of our model remains stable under moderate changes of ε. However, when
ε becomes excessively large, the proximal regularization term dominates over the sparse assignment
matching, which may lead to performance degradation. Therefore, we empirically set ε = 0.5 in all
experiments.

A.12 COMPUTATIONAL COMPLEXITY ANALYSIS

We profile the computational overhead of each component on an RTX 4090 with batch size
128 and input resolution 224 × 224. HCS performs one forward DFT/IDFT pair per image
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Figure 6: Sensitivity analysis of key hyperparameters.

(via torch.fft), applies a binary frequency-plane mask, runs a cosine-similarity scan against
previous-stage prototypes, and fits a 1D GMM on scalar scores; the cost is dominated by FFTs, with
masking/cosine/GMM negligible. For the known-like subset, SAM solves a proximal OT subprob-
lem with a few lightweight dual updates over (ψ,φ) and a closed-form refresh of γ; computing the
cost matrix and sparse projection is minor compared to FFT work. For the unknown-like subset,
IKT reuses low-frequency statistics from the previous stage to sample perturbed styles, reconstructs
low-frequency spectra and fuses them with the original high-frequency part before an inverse DFT,
then compares two feature views (original vs. style-transferred) to all prototypes to build Plackett–
Luce listwise distributions and a KL divergence; the extra compute is mainly the single IFFT per
unknown sample, with ranking terms lightweight. Overall, the framework adds approximately 5.2
GFLOPs and increases per-iteration time by ∼0.65 s, and thanks to GPU-accelerated FFTs, efficient
proximal OT updates, and amortized clustering, the overhead remains manageable and scales well
to large open-world streams.
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Table 15: Stage-wise clustering accuracy (%) of all methods on the CUB-C dataset under the dy-
namic domain-incremental setting. At each stage, new domains are progressively introduced (Stage
1: Gaussian, Shot, Impulse Noise; Stage 2: Zoom Blur, Snow, Frost; Stage 3: Fog, Speckle, Spat-
ter). We report the accuracy on all classes (All), known classes (Old), and novel classes (New) at
each stage, as well as the average across all stages.

Stage 1 Stage 2 Stage 3 Average Stage 1 Stage 2 Stage 3 Average
Methods

All Old New All Old New All Old New All Old New All Old New All Old New All Old New All Old New
CUB-C

Original Corrupted

GCD 31.1 49.4 24.1 28.6 46.2 22.1 24.9 43.2 20.1 28.2 46.3 22.1 23.8 43.0 17.2 26.6 46.0 20.0 25.5 44.5 19.0 25.3 44.5 18.7
SimGCD 28.2 45.1 22.3 24.8 43.0 20.0 22.6 40.9 17.2 25.2 43.0 19.8 20.7 39.8 15.1 23.3 42.4 17.7 22.0 40.9 16.4 22.0 41.0 16.4
SPTNet 29.5 46.0 23.3 26.8 43.9 20.3 23.5 41.1 18.5 26.6 43.7 20.7 22.4 41.3 15.1 25.1 44.1 18.5 23.6 43.0 16.8 23.7 42.8 16.8
RLCD 30.0 48.4 24.6 27.7 45.2 22.7 25.8 42.6 19.9 27.8 45.4 22.4 23.3 42.6 16.6 26.1 45.3 19.3 25.0 44.1 18.1 24.8 44.0 18.0
G&M 17.8 36.4 12.8 14.9 32.7 9.2 12.9 29.3 5.6 15.2 32.8 9.2 10.6 29.6 5.1 13.9 31.8 7.4 12.4 30.7 6.4 12.3 30.7 6.3
PA-CGCD 29.4 48.1 23.9 26.9 44.7 21.6 24.6 42.2 18.7 27.0 45.0 21.4 22.5 41.8 15.7 25.3 44.6 18.5 24.2 43.5 16.8 24.0 43.3 17.0
DEAN 29.9 48.9 24.5 28.2 45.7 21.2 24.8 42.5 19.4 27.6 45.7 21.7 23.7 43.2 15.8 26.1 46.4 18.1 24.8 44.7 16.8 24.9 44.8 16.9
PromptCCD 31.1 49.8 26.4 28.7 46.5 22.8 26.3 43.5 20.1 28.7 46.6 23.1 24.6 43.2 17.4 27.3 46.3 20.4 26.2 44.6 18.8 26.0 44.7 18.9
VB-CGCD 34.7 50.2 27.2 31.9 48.5 25.4 29.3 46.5 22.4 32.0 48.4 25.0 26.9 45.4 19.5 29.6 48.4 22.4 28.4 46.6 21.1 28.3 46.8 21.0
PRISM 51.1 66.7 47.6 48.9 64.4 43.9 47.0 62.4 40.5 49.0 64.5 44.0 41.9 59.1 35.1 45.1 61.9 38.2 43.6 60.2 36.5 43.5 60.4 36.6

A.13 EXPERIMENTS ON DYNAMIC DOMAIN-INCREMENTAL SETTING

To further evaluate the performance of our proposed algorithm in dynamic domains, we conducted
an additional domain-incremental experiment. Specifically, we trained on the CUB-C dataset over
three stages, where new domains were progressively introduced at each stage. In Stage 1, we in-
troduced three types of perturbations: Gaussian Noise, Shot Noise, and Impulse Noise. In Stage 2,
we further incorporated Zoom Blur, Snow, and Frost. In Stage 3, additional perturbations includ-
ing Fog, Speckle, and Spatter were introduced. In this way, we simulated a realistic dynamic and
non-stationary data stream scenario, where each stage may involve domains unseen in the previous
stage. As shown in Table 15, we observed that under this more challenging dynamic-domain set-
ting, our model still achieved significant performance improvements and substantially outperformed
other competing methods, further demonstrating the robustness and effectiveness of the proposed
approach.

A.14 VISUALIZATION OF HCS SEPARATION ACROSS FINE-GRAINED DATASETS

We further visualize the separation behavior of HCS on several fine-grained datasets, as illustrated
in Fig. 7. Across most datasets, the separation scores of known and unknown samples show a
certain degree of discrepancy, indicating that HCS can reliably distinguish the two groups using
high-frequency information. Even on challenging fine-grained benchmarks—such as Stanford Cars-
C—where categories share strong visual resemblance, the score distributions still exhibit an approx-
imate bimodal pattern, demonstrating that meaningful separation can be achieved.

These observations highlight two important facts. First, high-frequency cues consistently provide
better separation than raw images, as the removal of low-frequency domain biases makes the remain-
ing semantic differences more distinguishable. Second, although the separability on fine-grained
datasets is naturally reduced due to subtle inter-class variations, high-frequency decomposition still
improves the separation of known and unknown samples.

Overall, the results in Fig. 7 confirm that high-frequency cues offer more reliable and robust sep-
aration than original images across diverse datasets, including challenging fine-grained scenarios.

A.15 BAD CASE ANALYSIS

Although the proposed HCS module provides robust separation between known and unknown sam-
ples across diverse datasets and corruption types, certain challenging scenarios may still lead to
reduced performance. A representative example arises under structural blurring—such as zoom
blur—which directly suppresses the semantic high-frequency cues that HCS relies on.

Structural blur smears object boundaries, attenuates fine textures, and destroys edge sharpness,
thereby weakening the discriminative high-frequency structures essential for our separation mecha-
nism. As illustrated in Appendix Fig. 8, the extracted high-frequency representations become less
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Figure 7: Comparison of separation performance across multiple fine-grained datasets.

informative in these cases, causing the separation scores of known and unknown samples to move
closer.

Nevertheless, even under such challenging corruptions, HCS consistently outperforms using raw
images. This is because the high-frequency decomposition still removes domain-specific low-
frequency biases, and the preserved semantic structures—although partially degraded—remain more
discriminative than full-spectrum representations. The resulting separation curve demonstrates that
the degradation introduced by structural blur affects both HCS and raw images, but the impact is
notably smaller for HCS.

Overall, these bad cases highlight an inherent limitation: when corruptions significantly destroy
semantic high-frequency content, the separability achievable by HCS naturally decreases. This
observation suggests a promising future direction—integrating structure-preserving or deblurring
techniques to further enhance the robustness of high-frequency-based separation under severe im-
age degradations.

A.16 COMPARISON WITH EXISTING DOMAIN-SHIFT GCD METHODS

Although prior domain-shift GCD approaches such as HiLo Wang et al. (2024a) and CDAD-
Net Rongali et al. (2024) cannot be directly adapted to the same domain-shift + CCD setting con-
sidered in our work, our framework can still be applied to the standard cross-domain GCD scenario
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Figure 8: Illustration of a challenging case, where structural blurring suppresses semantic high-
frequency cues and weakens separation, yet HCS still outperforms raw-image representations.

Table 16: Clustering results of various methods on the DomainNet benchmark. Each experiment
uses Real as the source domain, with one of Painting, Sketch, Quickdraw, Clipart, or Infograph
serving as the target. Clustering accuracy is reported for both domains.

Real + Painting Real + Sketch Real + Quickdraw Real + Clipart Real + Infograph
Methods

Real Painting Real Sketch Real Quickdraw Real Clipart Real Infograph
All Old New All Old New All Old New All Old New All Old New All Old New All Old New All Old New All Old New All Old New

CDAD-Net 63.6 77.9 56.3 38.4 38.4 37.5 61.9 76.3 52.1 17.3 20.9 15.9 48.5 66.5 36.7 6.4 5.6 7.3 61.3 77.0 53.1 25.2 31.9 19.0 56.5 68.0 47.1 11.8 15.6 9.4
HiLo 64.4 77.6 57.5 42.1 42.9 41.3 63.3 77.9 55.9 19.4 22.4 17.1 58.6 76.4 52.5 7.4 6.9 8.0 63.8 77.6 56.6 27.7 34.6 21.7 64.2 78.1 57.0 13.7 16.4 11.9
PRISM 68.7 77.8 63.3 47.2 46.8 45.8 68.7 78.2 63.0 23.8 24.9 22.8 61.8 77.5 57.1 9.0 7.3 9.4 67.2 77.4 62.0 30.4 36.4 27.6 69.1 77.6 61.2 16.7 18.7 14.3

for fair comparison. Following the experimental protocol of HiLo, we evaluate our method along-
side HiLo and CDAD-Net under the cross-domain GCD setting (note that this is not the proposed
OW-CCD scenario). As shown in the results, our approach outperforms both HiLo and CDAD-Net
in most cases, demonstrating that the proposed method is flexible and effective even when applied
to conventional cross-domain GCD tasks.

Table 17: Clustering results of various methods on the SSB-C benchmark. For each dataset (CUB,
Scars, and FGVC), the clean set serves as the source domain, while its corrupted counterpart is
treated as the target domain. Clustering accuracy is reported for both domains.

CUB-C Scars-C FGVC-C
Methods

Original Corrupted Original Corrupted Original Corrupted
All Old New All Old New All Old New All Old New All Old New All Old New

CDAD-Net 40.4 38.9 39.3 37.7 39.1 34.2 32.1 42.9 32.2 28.8 35.6 21.4 33.8 35.5 31.2 27.8 29.6 25.6
HiLo 56.8 54.0 60.3 52.0 53.6 50.5 39.5 44.8 37.0 35.6 42.9 28.4 44.2 50.6 47.4 31.2 29.0 33.4
PRISM 60.1 58.7 63.1 56.2 55.1 54.9 44.0 47.4 40.6 40.1 43.5 34.5 47.9 55.1 51.8 35.7 31.8 39.1

A.17 SOCIETAL IMPACT AND FUTURE DIRECTIONS

We study Open-World Continual Category Discovery (OW-CCD), which reflects the reality of dy-
namic data streams where category distributions are non-stationary and new classes emerge over
time. This research has broad societal implications, as it equips AI systems to adaptively recog-
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nize evolving concepts in real-world scenarios such as medical diagnostics, ecological monitoring,
and social media moderation, thereby enhancing their reliability and fairness in open environments.
However, limitations remain: (1) the open world introduces vast distributional shifts and complex
dynamics, where current models still struggle to maintain stable performance; and (2) most existing
work relies on single-modality data, whereas extending to multi-modal OW-CCD is crucial to fully
exploit diverse real-world signals (e.g., combining image, text, and sensor data) for robust knowl-
edge discovery. These challenges highlight promising future directions, motivating research into
more resilient algorithms and multi-modal learning frameworks for open-world continual discovery.

A.18 ETHICS STATEMENT

This research does not involve human participants, animal subjects, or the use of sensitive personal
data, nor does it present any potentially harmful applications. All experiments are conducted on
publicly available benchmark datasets that are properly licensed for academic use. The authors are
committed to adhering to ethical research standards and to promoting fairness, transparency, and
responsible development of AI technologies.

A.19 USE OF LLMS

During the preparation of this manuscript, we made limited use of publicly available large language
models (LLMs) solely to assist with English writing. All technical content, including the formulation
of ideas, design of methodologies, implementation of experiments, and interpretation of results, was
entirely conceived and written by the authors without LLM involvement. The role of LLMs was
strictly confined to stylistic and linguistic improvements, comparable to grammar- or spell-checking
software. No novel research insights, data, or analyses were generated by LLMs, and all scientific
claims and results presented in this work remain the sole responsibility of the authors.

A.20 REPRODUCIBILITY

To ensure reproducibility, we provide a comprehensive description of the model design in Section 3
and detailed experimental settings in Section 4.1. Furthermore, we include the full pseudocode of the
proposed PRISM framework in Appendix A.3, clearly outlining its main components and training
flow. These details collectively enable faithful reimplementation and verification of our results.
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