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Robust Semi-supervised Learning by
Wisely Leveraging Open-set Data

Yang Yang, Member, IEEE, Nan Jiang, Yi Xu, and De-Chuan Zhan

Abstract—Open-set Semi-supervised Learning (OSSL) holds a realistic setting that unlabeled data may come from classes unseen in
the labeled set, i.e., out-of-distribution (OOD) data, which could cause performance degradation in conventional SSL models. To
handle this issue, except for the traditional in-distribution (ID) classifier, some existing OSSL approaches employ an extra OOD
detection module to avoid the potential negative impact of the OOD data. Nevertheless, these approaches typically employ the entire
set of open-set data during their training process, which may contain data unfriendly to the OSSL task that can negatively influence the
model performance. This inspires us to develop a robust open-set data selection strategy for OSSL. Through a theoretical
understanding from the perspective of learning theory, we propose Wise Open-set Semi-supervised Learning (WiseOpen), a generic
OSSL framework that selectively leverages the open-set data for training the model. By applying a gradient-variance-based selection
mechanism, WiseOpen exploits a friendly subset instead of the whole open-set dataset to enhance the model’s capability of ID
classification. Moreover, to reduce the computational expense, we also propose two practical variants of WiseOpen by adopting
low-frequency update and loss-based selection respectively. Extensive experiments demonstrate the effectiveness of WiseOpen in
comparison with the state-of-the-art.

Index Terms—Semi-supervised Learning, OOD Detection, Open-set Data.

✦

1 INTRODUCTION

S EMI-SUPERVISED learning (SSL) [1], [2] leverages the
ubiquitous unlabeled data to break the limitation of

supervised learning (SL) caused by the huge human and
financial costs in obtaining labeled data [3], [4], [5], [6].
There exist various techniques for SSL, such as consistency
regularization [7], [8], [9] and entropy minimization [10],
[11]. Moreover, some recent holistic approaches [12], [13],
[14], [15], [16], [17] which integrate the techniques from
dominant SSL paradigms have successfully achieved excel-
lent performance on many benchmarks.

Despite all these achievements acquired by SSL, tradi-
tional SSL typically makes the assumption that labeled data
and unlabeled data share the same class space [19], [20].
However, in real applications, the unlabeled training dataset
may contain the data from classes unseen in the labeled,
i.e., OOD data, which may induce the existing SSL models
to overconfidently misclassify data from unseen classes to
nearby seen classes [21], [22], [23]. Aiming at promoting
SSL to more realistic scenarios, OSSL [18], [24], [25], [26] has
been widely investigated. An ideal OSSL model should have
the capability of tackling the following task: classifying the
ID testing instances under the potential interference of the
open-set training data. Most existing OSSL approaches [18],
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Fig. 1: An example of models’ performance (testing accu-
racy on ID classification) with different strategies of using
the open-set data (OS data) illustrates the effectiveness of
selectively leveraging OS data during the training process.
Experiments are conducted on Tiny-ImageNet at 120 seen
classes with 50 labels for each class. We employ the follow-
ing methods: (1) Labeled Only (w/o OS data), an SL method
only trained with labeled data; (2) OpenMatch [18] (w/ all
OS data), an OSSL method trained with all OS data; and (3)
WiseOpen-L on top of OpenMatch(w/ selected OS data), an
OSSL method trained with selected OS data.

[25], [26] usually apply an OOD detection module in ad-
dition to the traditional ID classifier, for the purpose of
acquiring the capability of differentiating OOD data from ID
data, thereby avoiding their potential negative impacts on
ID classifier training. Typically, all open-set (OS) data are in-
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volved in these OSSL models’ training, which may comprise
both friendly data and unfriendly data. Here friendly data
means the data are beneficial to the considered OSSL task,
while unfriendly can be the opposite. Due to the possible
existence of unfriendly data, the model effectiveness may
be affected if recklessly use the complete OS data set. On
the other hand, discarding all OS training data is also not
a wise choice, since it can result in the loss of valuable
information contained in friendly OS data, ultimately lead-
ing to unsatisfactory performance. We can observe from
Figure 1 that the method using all OS data has better ID
classification accuracy compared with the method without
using OS data, which reflects that in this example, certain
OS data (friendly data) can enhance the ID classification
accuracy. Furthermore, the method with selected OS data
has the best performance on ID classification. That is to say,
in this example, excluding certain unfriendly OS data can
further improve the ID classification performance, revealing
that the selection of OS training data is essential for the
OSSL task. Moreover, to give an insight into what data can
be friendly and to better demonstrate that utilizing friendly
OS data can enhance model effectiveness while using un-
friendly OS data can lead to performance degradation, we
derive a theoretical analysis in Section 3.2. Inspired by both
these empirical findings and theoretical analyses, we aim to
carefully leverage selected OS data in OSSL.

To this end, we propose a generic OSSL frame-
work called Wise Open-set Semi-supervised Learning
(WiseOpen), which selectively exploits the OS data de-
pending on the gradient variance. Specifically, based on
the theoretical analysis in Section 3.2 that friendly open-
set data can promote better generalization, for every epoch,
WiseOpen first calculates the loss gradient of the limited
labeled data as the approximate expectation of the gradi-
ent of the loss. Then based on the approximate gradient
expectation and the gradient of each open-set instance, it
computes the gradient variance for each open-set instance,
and open-set data with smaller gradient variance will be
selected as friendly data to train the OSSL model along
with the limited labeled data. By applying this Gradient-
Variance-based Selection Mechanism (GV-SM), the model
can achieve better performance by the wiser exploitation of
the open-set data. Nevertheless, it is of high time cost to
calculate the gradient variance for each instance in every
epoch. To handle this tricky situation, we provide two prac-
tical and economic variants of WiseOpen named WiseOpen-
Economic and WiseOpen-Loss. WiseOpen-E sets a larger
interval of updating the friendly open-set data set obtained
by GV-SM, which can effectively make a balance between
the time cost and the model performance. But meanwhile,
WiseOpen-E will inevitably suffer from the stale selection
issue which may harm the model performance. On the
other hand, WiseOpen-L employs loss values as a sub-
stitute for the gradient variance to select friendly data,
which can address the time-consuming problem without
raising the stale-selecting problems. WiseOpen-L can lead
to inclusiveness of some previous SSL and OSSL methods
using certain loss-based or confidence-based selection mech-
anisms, like [14], [15], [27]. We theoretically demonstrate the
rationality and feasibility of replacing GV-SM in WiseOpen
and WiseOpen-E with Loss-based Selection Mechanism (L-

SM) in WiseOpen-L. Experiments on CIFAR-10/100 [28]
and Tiny-ImageNet [29] show that our naive approach,
i.e., WiseOpen can achieve outstanding performance on the
OSSL tasks by wisely leveraging the OS data while the two
variants can also outperform the baselines. To summarize,
our main contributions are:

• From the perspective of learning theory, we put for-
ward an insight into the necessity of selectively lever-
aging the friendly open-set data in OSSL scenarios.

• We propose a robust general OSSL framework
WiseOpen that employs GV-SM to wisely select friendly
open-set data. This provides the OSSL community with
a plug-and-play module to enhance the models’ perfor-
mance.

• We further provide WiseOpen-E and WiseOpen-L as
two practical variants of WiseOpen, which can make
the selection procedure more computation-friendly
while still yielding performance improvements.

• The effectiveness of our proposed WiseOpen and its
variants is demonstrated by extensive experiments on
three popular benchmark datasets.

2 RELATED WORK

Semi-supervised Learning. SSL aims at leveraging the un-
labeled data to improve the model’s performance without
the extra cost of data annotation. With the advancement of
deep learning [30], a number of deep SSL methods have
been reported. For example, entropy minimization meth-
ods [11] focus on preventing the model from producing a
flat prediction. Consistency regularization methods [7], [8],
[9], [31] encourage the model to output the same results
between differently augmented inputs. Additionally, holistic
approaches like MixMatch [12] and FixMatch [14] success-
fully integrate some prior SSL techniques in a framework to
gain better performance. Specifically, FixMatch is a simple
but effective method that jointly employs consistency reg-
ularization and pseudo-labeling techniques and applies a
fixed threshold for selecting high-confident unlabeled data
to train the model. After the success of FixMatch, recent
works like Dash [15], FlexMatch [32], and FreeMatch [27]
further explore how to determine the suitable confidence
thresholds according to model’s learning status so that
better exploit unlabeled data for better performance. Despite
the achievements acquired by these SSL methods, they
typically hold the assumption that the labeled data and
unlabeled data share the same class space. When it comes to
the realistic open-set scenario in this paper, they usually fail
to do the job, as they may misclassify the data from unseen
classes to certain nearby seen classes overconfidently.
Open-set Semi-supervised Learning. OSSL, an emerging
branch of SSL, considers a more realistic scenario that the
unlabeled data may come from unseen classes except for
seen classes. A variety of methods [18], [24], [25], [26], [33],
[34], [35], [36], [37] has been proposed in recent years. For
example, D3SL [25] applies meta-learning to obtain a weight
function for alleviating the impact of OOD data. MTC [26]
employs a multi-task curriculum framework to leverage
the unlabeled data in calculating the MixMatch [12] loss.
OpenMatch [18] adopts one-vs-all classifiers with soft open-
set consistency regularization and incorporates FixMatch to
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handle the OSSL tasks. OpenCos [35] utilizes the model pre-
trained by contrastive learning to identify the pseudo-ID
and pseudo-OOD data which will be used for fine-tuning
the pre-trained model with certain SSL loss plus an auxiliary
loss that assigns soft labels to pseudo-OOD data. Although
these methods have been reported to get respectable per-
formance, they typically utilize all open-set data to train
the models, which can lead to performance degradation
caused by unfriendly open-set data. One recent method
IOMatch [37] has proposed to select confident pseudo-ID
data while calculating unlabeled inlier loss, and exclude
unlabeled data with low confidence in open-set predictions
while calculating open-set loss where all unseen classes are
regarded as one single class. In other words, IOMatch sepa-
rately designs the selection mechanism specialized for each
single loss based on the prediction confidence, aiming at
conquering the dilemma of unreliable results in the training
procedure. In contrast, with an insight into selecting friendly
data from the whole learning task perspective, we propose
applying GV-SM or L-SM over the unified unsupervised
loss, which is more generic, and is orthogonal and comple-
mentary to prior methods.
Out-of-distribution Detection. OOD detection aims at de-
tecting outliers that belong to the different distributions
from the training distributions while ensuring that the ID
classification is not adversely affected [38]. Existing OOD
detection methods [39], [40], [41], [42], [43], [44] have been
reported to achieve excellent performance in tackling this
task. However, these methods usually acquire abundant
labeled data from seen classes and some methods [45], [46],
[47] even additionally utilize external OOD knowledge in
the training phase. In contrast, OSSL only has limited access
to the labeled data of seen classes and needs to handle
the unlabeled data from unseen classes in training, which
renders the task more challenging.

3 WISEOPEN: WISELY LEVERAGE THE OPEN-SET
DATA

In this section, we first provide the preliminary of our work.
Then through a theoretical understanding, we demonstrate
the effectiveness of excluding unfriendly open-set data and
utilizing friendly open-set data. Based on this, we then
specify the selection mechanisms applied in our proposed
approaches, which can help models gain better performance
in ID classification by wisely leveraging the open-set data.
Moreover, at the end of this section, we will clarify the
relationships between our proposed frameworks and the
existing OSSL methods.

3.1 Preliminary

Let S =
{
(xl

i,yi)
}Nl

i=1
be the labeled training data set, where

xl
i is an ID example from one of the K seen classes and

yi is its one-hot label. Let U = {xu
i }

Nu

i=1 be the unlabeled
training data set, where xu

i is an unlabeled training instance
drawn from the seen classes or unseen classes. Typically, the
overall objective function L of OSSL, no matter what specific
techniques are applied, can be written as

L = Ls(θ;S) + Lu(θ;U), (1)

TABLE 1: Frequently used notations along with their math-
ematical meaning.

Notation Mathematical Meaning

K Number of the seen classes.
S =

{
(xl

i,yi)
}Nl

i=1
Labeled training dataset containing Nl

labeled pairs(xl
i,yi).

U = {xu
i }Nu

i=1 Original unlabeled training dataset
containing Nu instance xu

i .
Ut Selected unlabeled subset in the t-th

epoch.
L,Ls,Lu The overall loss, supervised loss, and

unsupervised loss.
θ Parameters of the model.
g(θ) Stochastic gradient of loss function

computed at θ.
E[·] Mathematical expectation of some ran-

dom variable.
ERB(·) The excess risk bound given the model

parameters.
| · | Cardinality of the given set.

where Ls and Lu represent supervised loss and unsuper-
vised loss respectively and θ is the parameters of the model.
The main goal of OSSL is to learn an ID classification model
described by the parameter θ optimized by minimizing
L on S and U . And the most tricky problem is how to
handle the open-set data set U so that better ID classification
performance can be gained.

Previous studies have presented different answers to
this tricky problem. Taking OpenMatch [37] as an example,
given a labeled example xl

i, it will acquire a K-dimensional
probability vector p(θ;xl

i) by a traditional ID classifier
and K 2-dimensional probability vector {qk(θ;xl

i) =
(qk0 (θ;x

l
i), q

k
1 (θ;x

l
i))}Kk=1 by an OOD detector which is com-

posed of K binary sub-classifier. Here qk0 (θ;x
l
i) indicates

the probability of being an inlier of class k while qk1 (θ;x
l
i)

indicates not. For simplicity, we will hide the model’s pa-
rameters θ and reduce the notation p(θ;xl

i) and qk(θ;xl
i) =

(qk0 (θ;x
l
i), q

k
1 (θ;x

l
i)) to p(xl

i) and qk(xl
i) = (qk0 (x

l
i), q

k
1 (x

l
i)),

respectively. Then to train the model upon labeled training
data set S , OpenMatch will compute the following losses:

Lce(θ;S) =
1

|S|
∑

(xl
i,yi)∈S

H(yi,p(x
l
i)), (2)

Lova(θ;S) = −
1

|S|
∑

(xl
i,yi)∈S

log qyi

0 (xl
i) + min

k ̸=yi

log qk1 (x
l
i),

(3)
where H(·, ·) denotes the standard cross-entropy loss, |S| =
Nl denotes the cardinality of S, and yi denotes the ground
truth of xl

i, i.e., xl
i belongs to class yi. On the other hand,

given an unlabeled instance xu
i , OpenMatch first applies

standard random cropping α(·) as weak data augmentation
to obtain α0(x

u
i ) and α1(x

u
i ). Then it will calculate the

following losses:

Lem(θ;U) = − 1

|U|
∑
xu
i ∈U

1∑
j=0

K∑
k=1

qk(αj(x
u
i )) logq

k(αj(x
u
i )),

(4)
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Loc(θ;U) =
1

|U|
∑
xu
i ∈U

K∑
k=1

∥qk(α0(x
u
i ))−qk(α1(x

u
i ))∥22. (5)

Moreover, it adopts FixMatch over the pseudo-ID instances
which can be formulated as

Lfm(θ;U) = 1

|U|
∑
xu
i ∈U
M(α(xu

i ))H(ŷu
i ,p(A(xu

i ))), (6)

where A(·) indicates strong data augmentation like Ran-
dAugment [48] and M(α(xu

i )) = I(qŷ
u
i

0 (α(xu
i )) > 0.5) ·

I(max(p(α(xu
i ))) > ρ) in which ρ is a threshold, and

ŷui = argminp(α(xu
i )) represents the pseudo-label of xu

i

and ŷu
i will be its one-hot version. To summarize, the overall

objective function of OpenMatch can be written as

L =Lce(θ;S) + Lova(θ;S)︸ ︷︷ ︸
Ls(θ;S)

+ λ1Lem(θ;U) + λ2Loc(θ;U) + λ3Lfm(θ;U)︸ ︷︷ ︸
Lu(θ;U)

, (7)

where λ1, λ2 and λ3 are trade-off parameters. It can be
observed that OpenMatch recklessly employs the whole
open-set data set U to train the model which is common
in previous studies. Note that although in Eq.6, M(α(xu

i ))
is applied for obtaining confident pseudo-ID instances, Eq.4
and Eq.5 still utilize the whole unlabeled data set. Thus,
the entire model of OpenMatch actually still leverages all
open-set data. Oppositely, we argue that it is necessary
to selectively leverage the open-set data U which will be
demonstrated in the following theoretical analysis.

3.2 Theoretical Understanding

In this subsection, we aim to understand the learning task
from the perspective of generalization. For the simplicity of
generalization analysis, we abstract the key points of the
learning task and make it more math-friendly. For example,
we do not consider data augmentations in our analysis. To
this end, we formulate it as the following risk minimiza-
tion (RM) problem, which is commonly used in Statistical
Learning Theory:

min
θ
L(θ) := Eζ∼D[ℓ(θ; ζ)], (8)

where θ is the parameter to be learned, ζ is the training data
following a unknown distribution D, ℓ is the loss function
and E[·] is the expectation. Generally, it is impossible to
know the loss function L(θ) explicitly due to the unknown
distribution of D. Instead of solving problem (8) directly, we
usually consider the following empirical risk minimization
(ERM) problem: minθ L̂(θ) := 1

|D̂|

∑
ζ∈D̂

ℓ(θ; ζ), where D̂ is a

sampled training data set with sample size |D̂|. To solve the
ERM problem, stochastic gradient descent (SGD) is widely
employed, whose key update step is θt+1 = θt−ηĝ(θt) with
the learning rate η > 0, where θt indicates the parameter in
t-th epoch. Due to the labeled (ID) and unlabeled (ID and
OOD) data containing in D̂, the stochastic gradient of loss
function computed at θt can be rewritten as

ĝ(θt) = λgid(θt) + (1− λ)(τgfr(θt) + (1− τ)guf(θt)), (9)

where λ, τ ∈ [0, 1] are two constants, gid is the stochastic
gradient computed by ID data while gfr and guf are two
stochastic gradients computed by friendly unlabeled data
and unfriendly unlabeled data respectively. We use the
gradient variances to measure the distance between labeled
data and open-set data. Specifically, we bound the variance
for each stochastic gradient in the following assumptions.

Assumption 1 (Bounded variance [49]). The stochastic gradi-
ent is unbiased, E[ĝ(θ)] = ∇L(θ). The stochastic gradient gid(θ)
is variance bounded, i.e., there exists a constant σ2 > 0, such that

E[∥gid(θ)−∇L(θ)∥2] ≤ σ2.

Assumption 2 (Weak Growth Condition [50], [51]). The
stochastic gradient of gfr(θ) and guf(θ) are variance bounded, i.e.,
there exists a constant σ2 > 0, such that

E[∥gfr(θ)−∇L(θ)∥2] ≤
ϵ

2
∥∇L(θ)∥2 + σ2.

E[∥guf(θ)−∇L(θ)∥2] ≤
ν

2
∥∇L(θ)∥2 + σ2.

where ϵ > 0 is a small constant and ν ≫ 1 is a large enough
constant.

Since ν ≫ 1 is large enough, we can consider that the
variance for guf(θ) is much larger than the variance for
gfr(θ). We consider the friendly data to have small variance
so we suppose ϵ > 0 is small. Similarly, we consider ν ≫ 1 is
large enough for unfriendly data. In generalization analysis,
we are interested in the excess risk bound (ERB):

ERB(θ̂) := L(θ̂)− L(θ∗), (10)

where θ̂ is a solution obtained by an algorithm and θ∗ ∈
argminθ L(θ) is the optimal solution of problem (8). For the
convenience of analysis, we make the following widely used
assumptions for the loss function.

Assumption 3 (Smoothness [52]). L(θ) is smooth with an L-
Lipchitz continuous gradient, i.e., it is differentiable and there
exists a constant L > 0 such that

∥∇L(θ)−∇L(θ′)∥ ≤ L∥θ − θ′∥.

This is equivalent to

L(θ)− L(θ′) ≤ ⟨L(θ′), θ − θ′⟩+ L

2
∥θ − θ′∥2.

Assumption 4 (Polyak-Łojasiewicz condition [53]). There
exists a constant µ > 0 such that

2µ(L(θ)− L(θ∗)) ≤ ∥∇L(θ)∥2,

where θ∗ ∈ argminθ L(θ) is a optimal solution.

It is worth noting that the Polyak-Łojasiewicz condition
has been theoretically [54] and empirically [55] observed
in training deep neural networks. Weaker than many other
conditions like strong convexity, restricted strong convexity,
and weak strong convexity [56], it has been widely used to
establish the convergence of non-convex optimization [57],
[58], [59].

Under the standard assumptions on loss function, we
have the following theorem for ERB. Due to the space
limitation, we include the proof in the supplementary.
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Theorem 1. Under assumptions 1, 2, 3, 4, we have the following
ERB in expectation:
(a) when all data are used: by setting η ≤ 1

(1−λ)(τϵ+(1−τ)ν)L , we
have

ERB(θ̂id+uf+fr) ≤ O (L(θ0)− L(θ∗)) ;

(b) when only labeled data are used: by setting η =
2
nµ log

(
nµ2(L(θ0)−L(θ∗))

σ2L

)
, we have

ERB(θ̂id) ≤
Lσ2

nµ2
+

2Lσ2

nµ2
log

(
nµ2(L(θ0)− L(θ∗))

σ2L

)
≤ O

(
log (n)

n

)
;

(c) when labeled and friendly data are used: by setting η =
2

(n+m)µ log
(
(n+m)µ2(L(θ0)−L(θ∗))

σ2L

)
, we have

ERB(θ̂id+fr) ≤
Lσ2

(n+m)µ2

+
2Lσ2

(n+m)µ2
log

(
(n+m)µ2(L(θ0)− L(θ∗))

σ2L

)
≤ O

(
log (n+m)

(n+m)

)
,

where n and m are the sample sizes of labeled data and friendly
data, respectively, Õ(·) suppresses a logarithmic factor and con-
stants.

The results of Theorem 1 show that (1) the algorithm
could not reduce the objective due to the large variance
arising from unfriendly open-set data; (2) by using friendly
open-set data, the algorithm could significantly reduce the
objective, and it has better generalization by comparing with
the one only using labeled data. The theoretical findings
inspire us to design a selection method for wisely leveraging
open-set data. Specifically, one may carefully select and use
friendly open-set data during training progress to improve
the performance of the learning task.

3.3 Wise Selection Mechanism

Inspired by the theoretical understanding above, we aim to
wisely select and exploit a subset of the original unlabeled
data set Ut ⊆ U that consists of the open-set data friendly
to the model training in the t-th epoch so that we can learn
a model from Ut and S with better capability of classifying
ID instances.

To this end, based on Theorem 1, we design a gradient-
variance-based selection mechanism (GV-SM) to discard the
unfriendly open-set data with large gradient variance so
that we can exploit the remaining relatively friendly open-
set data to learn a model with better ID classification ca-
pability. Specifically, our proposed GV-SM of the t-th epoch
can be formulated as

Ut =
{
xu
i ∈ U | ∥gxu

i
(θt)− ḡ(θt)∥ <

√
ρt
}
, (11)

where gxu
i
(θt) denotes the gradient computed by open-set

instances xu
i , ḡ(θt) denotes the estimated expectation of the

gradient of the overall objective function L, and ρt indicates

Algorithm 1: WiseOpen Family.
Input: Labeled data S , unlabeled data U , model

parameters θ, epoch Emax, iteration Imax,
learning rate η, selection interval es.

for t← 1 to Emax do
if t % es == 0 then

Obtain Ut according to Eq.11 or Eq.19;
else

Obtain Ut = Ut−1;
end
for iter ← 1 to Imax do

Sample batches Bl ∈ S and Bu ∈ Ut;
Compute L ← Ls(θ;Bl) + Lu(θ;Bu);
Update θ ← θ − η ∂L

∂θ ;
end

end

the threshold in the t-th epoch. In this paper, we utilize the
labeled data set S to obtain ḡ(θt):

ḡ(θt) =
1

Nl

Nl∑
i=1

∂Ls(θt;x
l
i)

∂θt
. (12)

Meanwhile, we calculate gxu
i
(θt) by the following formula:

gxu
i
(θt) =

∂Lu(θt;x
u
i )

∂θt
. (13)

As for obtaining ρt, without loss of generality, we apply
the following two simple methods: (1) Top-k, which utilizes
the k-th largest gradient variance among {gxu

i
(θt)}Nu

i as ρt;
(2) Otsu thresholding [60], which adaptively determine ρt
by maximizing the variance of gxu

i
(θt) between the selected

and discarded open-set data clusters.
By applying this wise selection mechanism, WiseOpen

reformulates the typical OSSL objective function in the t-th
epoch as

L = Ls(θt;S) + Lu(θt;Ut). (14)

To be more specific, after implementing our proposed
WiseOpen on top of OpenMatch, we will rewrite Open-
Match’s objective formulated in Eq.7 as

L =Lce(θt;S) + Lova(θt;S)︸ ︷︷ ︸
Ls(θt;S)

+ λ1Lem(θt;Ut) + λ2Loc(θt;Ut) + λ3Lfm(θt;Ut)︸ ︷︷ ︸
Lu(θt;Ut)

.

(15)

3.4 Practical Variants
Ideally, the selection procedure should be implemented for
every epoch, which is applied in the naive WiseOpen. How-
ever, it can be computationally expensive to calculate gra-
dient variance for each unlabeled instance in every epoch,
as shown in Table 3 in Section 4.2. Therefore, we proposed
two practical variants of WiseOpen, namely WiseOpen-E
and WiseOpen-L. The overall framework of the WiseOpen
family, i.e., WiseOpen and its variants, is summarized in
Algorithm 1.
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WiseOpen-E. Before introducing WiseOpen-E, let us
consider an example as follows. The updating step of SGD
at t-th epoch can be formulated as θt = θt−1−ηg(θt−1), then
after m epochs, we have θt+m = θt−1 − η

∑m
k=0 g(θt−1+k).

By the condition of smoothness variance with parameter L′,
we have

∥g(θt+m)− g(θt)∥ ≤ L′∥θt+m − θt∥ = ηL′

∥∥∥∥∥
m∑

k=1

g(θt−1+k)

∥∥∥∥∥ .
(16)

Since η is small, if m is not large, then ηL′ ∥
∑m

k=1 g(θt−1+k)∥
is small, indicating that g(θt+m) and g(θt) are close enough.
Inspired by this example, gradients within a small updating
interval could be similar. Thus, as a natural idea, an eco-
nomical version of WiseOpen, WiseOpen-E simply sets an
interval es of updating the selecting result of open-set data.
Specifically, once a selection procedure in the t-th epoch is
accomplished, the selected open-set subset will remain un-
changed for (es−1) epochs, i.e., Ut = Ut+1 = · · · = Ut+es−1,
and in the (t + es)-th epoch another selection procedure
will be carried out to update the selected open-set subset.
In our experiments of WiseOpen-E, es is set as 10 while for
the experiments of WiseOpen and WiseOpen-L introduced
later, es is set as 1. Nevertheless, as a trade-off of obtaining
higher efficiency, the stale selection issue will inevitably
arise in WiseOpen-E. This means the selected subset may be
outdated for the current model training since the selection
decision is based on the previous, older model.

WiseOpen-L. Considering in practice, calculating the
loss value for each sample is significantly less computa-
tionally expensive compared to calculating the gradient
variance, if loss value can be employed as a substitute for
the gradient variance, then we can achieve computationally
friendly data selection without raising the stale selection
issue. Inspired by the Polyak-Łojasiewicz condition [53] of a
loss function ℓ(θ):

ℓ(θ) ≤ 1

2µ
∥∇ℓ(θ)∥2 + ℓ(θ∗), (17)

where µ > 0 is a constant and θ∗ ∈ argminθ ℓ(θ) is
a optimal solution, we can make an informal connection
between loss function and its gradient norm. If we apply the
Polyak-Łojasiewicz condition to function Lu(θ;x

u
i ), then we

have

Lu(θt;x
u
i ) ≤

1

2µ
∥gxu

i
(θt)∥2 + Lu(θ∗;x

u
i ).

Once ∥gxu
i
(θt) − ḡ(θt)∥ ≤

√
ρt holds in (11), then by

∥gxu
i
(θt)−ḡ(θt)∥ ≥ ∥gxu

i
(θt)∥−∥ḡ(θt)∥we have ∥gxu

i
(θt)∥ ≤√

ρt + ∥ḡ(θt)∥, so that

Lu(θt;x
u
i ) ≤

(
√
ρt + ∥ḡ(θt)∥)2

2µ
+ Lu(θ∗;x

u
i ). (18)

That is to say, if xu
i ∈ Ut in (11), i.e. ∥gxu

i
(θt) − ḡ(θt)∥ is

upper bounded, then Lu(θt;x
u
i ) can aslo be upper bounded.

Therefore, we propose another variant of WiseOpen, called
WiseOpen-L which applies a loss-based selection mecha-
nism (L-SM) that selects the friendly open-set data with
smaller loss values to construct Ut:

Ut = {xu
i ∈ U | Lu(θt;x

u
i ) < ρ′t} , (19)

where in this paper, the threshold ρ′t is also acquired by the
Top-k or Otsu thresholding methods.

3.5 Relationships to Previous Methods

Inclusiveness to Previous Methods. Firstly, our proposed
WiseOpen and its variants are designed upon the uni-
fied formulation of the overall objectives in the OSSL
scenarios. Therefore, we are proposing robust generic
OSSL frameworks that can be easily implemented into
the existing OSSL and SSL methods to improve perfor-
mance. Moreover, WiseOpen-L, as one of our proposed
accelerated variants, actually can be seen as a general
version of some previous SSL and OSSL methods that
adopt confidence-based selection mechanisms. For exam-
ple, when we exclude I(qŷ

u
i (α(xu

i )) > 0.5) in M(α(xu
i ))

of Lfm formulated in Eq.6, it will be the exact unsuper-
vised loss Lu in FixMatch [14]. And the remaining select-
ing component I(max(p(α(xu

i ))) > ρ) can converted to
I(− logmax(p(α(xu

i ))) < − log ρ), which actually can be
seen as a kind of loss-based selection mechanism depending
on the cross-entropy loss over α(xu

i ) using its one-hot
pseudo-label.

Differnce between Exisiting Selection Mechanisms.
Although previous studies have exploited various selection
mechanisms, we distinguish our proposed method in the
following aspects: (1) Our frameworks apply the selection
mechanism on the whole learning task level, or in other
words, on the unified unsupervised loss level. In contrast,
the previous methods usually employ selection mechanisms
on a single loss function level. For example, in OpenMatch,
Lfm formulated in Eq.6 uses 0.5 and ρ as the threshold
to select the pseudo-ID instances with high confidence in
ID classification. But this selection is just applied to this
single loss while Lem and Loc formulated in Eq.4 and Eq.5
still leverage the whole open-set data, which may harm the
model’s performance due to the existence of the unfriendly
open-set data. (2) As far as we know, different from the
popular confidence-based selection mechanisms used in the
previous work [14], [18], [27], [37], we are the first to propose
selecting open-set data based on the gradient variance with
solid theoretical analysis in the OSSL scenarios.

4 EXPERIMENTS

In this section, we introduce the comprehensive settings of
experiments and provide sufficient evaluations to demon-
strate the effectiveness of our proposed frameworks.

4.1 Experimental Settings

Datasets. Following [18], [21], [26], [61], [62], we choose
three benchmark datasets to evaluate the efficacy of
WiseOpen, namely:

• CIFAR-10 [28], a dataset consisting of 10 classes, of
which each class contains 5,000 and 1,000 images for
training and testing respectively;

• CIFAR-100, a dataset consisting of 100 classes, of which
each class contains 500 and 100 images for training and
testing respectively;
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TABLE 2: The hyper-parameter k for the Top-k threshold.

(a) k utilized in the Top-k threshold for GV-SM followed with the proportion to the whole open-set.

CIFAR-10 CIFAR-100 Tiny-ImageNet

Vanilla Baselines 50 labels 100 labels 400 labels 50 labels 100 labels 50 labels

FixMatch 2470 (5%) 2455 (5%) 2365 (5%) 880 (2%) 410 (1%) 1760 (2%)
FreeMatch 2470 (5%) 2455 (5%) 4730 (10%) 6600 (15%) 4100(10%) 17600 (20%)
MTC 4940 (10%) 4910 (10%) 2365 (5%) 4400 (10%) 4100 (10%) 4400 (5%)
OpenMatch 2470 (5%) 2455 (5%) 2365 (5%) 4400 (10%) 4100 (10%) 4400 (5%)
IOMatch 2470 (5%) 982 (2%) 946 (2%) 880 (2%) 2050 (5%) 1760 (2%)

(b) k utilized in the Top-k threshold for L-SM followed with the proportion to the whole open-set.

CIFAR-10 CIFAR-100 Tiny-ImageNet

Vanilla Baselines 50 labels 100 labels 400 labels 50 labels 100 labels 50 labels

MTC 4940 (10%) 4910 (10%) 2365 (5%) 4400 (10%) 4100 (10%) 4400 (5%)
OpenMatch 2470 (5%) 2455 (5%) 2365 (5%) 4400 (10%) 4100 (10%) 4400 (5%)
IOMatch 494 (1%) 491 (1%) 473 (1%) 6600 (15%) 6150 (15%) 22000 (25%)

TABLE 3: Models’ training time of original OpenMatch and
our proposed frameworks on top of OpenMatch. Experi-
ments are conducted using CIFAR-100 with 100 labels on a
single NVIDIA GeForce RTX 4090.

Algorithm Training Time

OpenMatch 10h 59m
w/ WiseOpen † 43h 01m
w/ WiseOpen ‡ 43h 05m
w/ WiseOpen-E † 13h 40m
w/ WiseOpen-E ‡ 13h 43m
w/ WiseOpen-L † 11h 36m
w/ WiseOpen-L ‡ 11h 43m

• Tiny-ImageNet [29], a subset of ImageNet [63] consist-
ing of 200 classes, of which each class contains 500 and
100 images for training and testing respectively.

For all datasets, different from [18], [37], the first K classes
are taken as seen classes while the rest of classes are taken
as unseen classes, in order to construct a more complicated
OSSL scenario followed by [21], [61]. Following [18], we
conduct the experiments with different amounts of labeled
training examples: 50, 100, or 400 labels per seen class for
CIFAR-10, and 50 or 100 labels per seen class for CIFAR-
100. As for Tiny-ImageNet, 50 training examples are taken
as labeled data for each seen class. Additionally, 50 training
examples per seen class are split as a validation set for all
experiments. Except for the labeled set and validation set,
the remaining training data are taken as unlabeled instances.

To present the way we construct the OSSL scenario more
specifically, we take the OSSL scenario constructing proce-
dure on CIFAR-10 as an example. In our experiments, we
take the first 6 classes of CIFAR-10 as seen classes, namely
airplane, automobile, bird, cat, deer, and dog, while the
remaining 4 classes consisting of frog, horse, ship, and truck
are taken as unseen classes. We randomly sample the images
in the training set to construct a labeled set, an unlabeled

74.00 74.25 74.50 74.75 75.00 75.25 75.50
Accuracy (%)
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(a) Evaluation of ID classification.
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(b) Evaluation of OOD detection.

Fig. 2: Performance of original OpenMatch and our pro-
posed WiseOpen on top of OpenMatch. Experiments are
conducted on CIFAR-100 with 100 labels per class. † means
using Top-k threshold while ‡ means using Otsu threshold.

set, and a validation set. Considering the setting of CIFAR-
10 with 100 labels per class, we will get a labeled training
set of 600 images with annotation in total which come from
the seen classes, an unlabeled training set of 49,100 images
where 29,100 images are from the seen classes while the rest
20,000 images are from the unseen classes, a validating set of
300 images from the seen classes, and a testing set of 10,000
images from the seen and unseen classes.

Baselines and Evaluation. There are three categories
of the baseline methods: (1) Labeled Only method, which
only trains the model with labeled data using cross-entropy
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TABLE 4: Comparison of ID classification accuracy (in %, mean ± standard deviation) on CIFAR-10, CIFAR-100, and Tiny-
ImageNet with varying labels per seen class. † means using Top-k threshold while ‡ means using Otsu threshold. Each
block consists of the results of the baseline with or without the variants of WiseOpen and the improvements that our
proposed frameworks can make. The best results for each data setting in each block are in bold.

CIFAR-10 CIFAR-100 Tiny-ImageNet

Algorithms 50 labels 100 labels 400 labels 50 labels 100 labels 50 labels

Labeled Only 63.16±0.87 67.26±1.08 83.67±0.29 60.15±0.20 64.96±0.29 42.31±0.43

FixMatch [14] 90.48±0.01 92.61±0.16 93.68±0.46 70.16±0.48 74.17±0.22 45.11±0.53
w/ WiseOpen-E † 91.33±0.15 92.61±0.32 93.67±0.20 70.53±0.48 74.13±0.41 44.90±0.63
w/ WiseOpen-E ‡ 91.52±0.44 92.54±0.11 93.80±0.31 69.86±0.16 74.12±0.38 44.98±0.57
∆ (mean) +0.94 -0.03 +0.06 +0.04 -0.04 -0.17
∆ (max) +1.04 0.00 +0.12 +0.38 -0.04 -0.13

FreeMatch [27] 85.43±0.64 88.44±0.36 89.47±0.29 65.38±0.80 70.20±0.27 42.16±0.84
w/ WiseOpen-E † 86.09±2.00 88.36±0.80 89.76±0.75 65.68±0.52 70.32±0.40 42.74±0.06
w/ WiseOpen-E ‡ 85.71±0.33 88.71±0.36 90.37±0.76 65.52±0.47 70.13±0.12 42.49±0.55
∆ (mean) +0.47 +0.09 +0.60 +0.22 +0.02 +0.46
∆ (max) +0.66 +0.27 +0.90 +0.30 +0.12 +0.58

MTC [26] 79.00±1.73 80.51±1.67 89.03±0.93 64.22±0.61 70.22±0.57 39.57±0.17
w/ WiseOpen-E † 81.37±2.71 82.58±1.51 89.73±0.34 64.71±0.28 70.33±0.12 40.49±0.48
w/ WiseOpen-E ‡ 82.57±0.40 82.17±1.08 89.27±0.45 64.54±0.48 70.42±0.16 39.80±0.11
w/ WiseOpen-L † 81.34±1.89 83.45±1.45 89.23±0.87 64.68±0.83 70.16±0.76 39.83±0.28
w/ WiseOpen-L ‡ 82.65±0.32 85.69±1.55 89.54±0.49 64.39±0.40 70.34±0.26 38.99±0.38
∆ (mean) +2.98 +2.97 +0.42 +0.36 +0.09 +0.21
∆ (max) +3.65 +5.19 +0.70 +0.49 +0.20 +0.92

OpenMatch [18] 82.45±2.31 91.23±0.94 92.80±0.45 70.23±0.30 74.56±0.46 47.33±0.81
w/ WiseOpen-E † 83.69±1.59 91.86±0.45 93.11±0.50 70.93±0.66 75.14±0.33 49.45±0.31
w/ WiseOpen-E ‡ 83.35±1.95 91.47±0.53 93.23±0.34 71.67±0.38 74.55±0.19 49.14±0.33
w/ WiseOpen-L † 83.45±0.95 91.82±0.37 93.12±0.27 71.23±0.59 75.38±0.58 49.75±0.69
w/ WiseOpen-L ‡ 84.69±0.76 91.34±0.69 92.93±0.06 71.12±0.31 75.09±0.43 48.74±0.08
∆ (mean) +1.34 +0.39 +0.30 +1.01 +0.48 +1.94
∆ (max) +2.24 +0.63 +0.43 +1.44 +0.82 +2.42

IOMatch [37] 91.54±0.32 92.09±0.36 93.46±0.17 69.83±0.59 73.87±0.25 47.86±0.24
w/ WiseOpen-E † 91.78±0.17 92.25±0.62 93.59±0.07 70.49±0.28 74.24±0.41 47.93±0.19
w/ WiseOpen-E ‡ 91.77±0.08 92.16±0.18 93.36±0.16 69.97±0.55 74.12±0.12 47.99±0.33
w/ WiseOpen-L † 91.90±0.16 92.25±0.20 93.56±0.25 70.26±0.55 74.36±0.45 48.49±0.40
w/ WiseOpen-L ‡ 91.16±0.29 92.02±0.20 93.35±0.08 70.47±0.37 74.33±0.05 49.18±0.40
∆ (mean) +0.11 +0.08 +0.00 +0.47 +0.40 +0.54
∆ (max) +0.36 +0.16 +0.13 +0.67 +0.49 +1.32

loss; (2) traditional SSL methods, including FixMatch [14]
and FreeMatch [27]; (3) OSSL methods, including MTC [26],
OpenMacth [18], and IOMatch [37]. As for the evaluation
of ID classification, we employ the top-1 accuracy over the
testing instances from seen classes. Moreover, to evaluate
OOD detection performance, the AUROC [64] over the
whole testing set is adopted following [18], [40].

Implementation Details. For fairness, followed by [18],
[26], [37], Wide ResNet-28-2 [65] is employed as the back-
bone representation extractor for all methods. For MTC,
we apply their official implementation with Pytorch. For
other methods, we utilize https://github.com/kekmodel/
FixMatch-pytorch as their pipeline to conduct the exper-
iments. The total number of training epochs for CIFAR-
10/100 and Tiny-ImageNet are 512 and 256 respectively, and
each epoch consists of 1024 iterations. For all experiments,

the batch sizes for labeled data and unlabeled data are 64
and 128 respectively. We employ the SGD with a nesterov
momentum of 0.9 as the optimizer, and the learning rate is
initialized as 0.03 and decays in a cosine annealing manner.
The hyper-parameter k utilized in Top-k thresholds for dif-
ferent scenarios is summarised in Table 2. All experiments
can be performed on a single NVIDIA GeForce RTX 4090.

4.2 Main Results
As shown in Figure 2, we first conduct the experiments
on top of OpenMatch on CIFRA-100 with 100 labels per
seen class to validate the effectiveness of WiseOpen. We
can observe that WiseOpen can make respectable perfor-
mance improvements to the original OpenMatch model.
However, as shown in Table 3, WiseOpen is relatively time-
consuming on account of the frequent GV-SM that requires

https://github.com/kekmodel/FixMatch-pytorch
https://github.com/kekmodel/FixMatch-pytorch
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TABLE 5: Comparison of AUROC (in %, mean ± standard deviation) for evaluating OOD detection performance. Higher
is better.

CIFAR-10 CIFAR-100 Tiny-ImageNet

Algorithms 50 labels 100 labels 400 labels 50 labels 100 labels 50 labels

Labeled Only 56.15±1.81 59.58±2.25 69.95±0.60 67.86±0.71 70.04±0.52 61.49±0.38

FixMatch [14] 38.46±0.62 41.02±0.87 48.49±1.41 60.19±0.30 63.14±0.23 58.65±0.82
w/ WiseOpen-E † 39.26±0.97 41.20±1.56 47.53±0.44 60.63±1.07 62.57±0.12 59.41±0.70
w/ WiseOpen-E ‡ 38.94±1.22 42.26±1.10 48.30±1.03 59.48±0.35 63.28±0.52 59.23±0.69
∆ (mean) +0.64 +0.70 -0.58 -0.14 -0.22 +0.67
∆ (max) +0.79 +1.23 -0.19 +0.44 +0.14 +0.76

FreeMatch [27] 45.94±1.84 52.86±1.78 64.67±1.12 64.92±0.70 68.71±0.19 59.58±0.42
w/ WiseOpen-E † 47.38±2.03 51.65±2.27 62.75±1.88 64.27±0.38 67.38±0.29 59.57±0.29
w/ WiseOpen-E ‡ 46.46±2.36 52.79±2.37 63.94±2.67 64.22±0.89 69.01±0.41 58.84±0.86
∆ (mean) +0.98 -0.64 -1.33 -0.68 -0.52 -0.38
∆ (max) +1.44 -0.07 -0.73 -0.65 +0.30 -0.01

MTC [26] 77.77±1.10 80.36±2.13 87.02±0.91 65.40±0.60 64.58±0.26 60.71±0.55
w/ WiseOpen-E † 79.02±0.35 82.02±1.98 88.67±0.76 66.78±1.79 65.09±1.25 61.08±0.62
w/ WiseOpen-E ‡ 78.10±0.36 79.08±1.74 86.59±2.45 65.97±0.91 64.41±1.25 61.29±0.08
w/ WiseOpen-L † 78.85±0.63 81.64±1.36 88.14±0.88 65.86±0.49 63.23±0.30 61.44±0.28
w/ WiseOpen-L ‡ 78.45±0.39 81.65±0.70 86.10±1.71 65.41±1.42 65.57±1.14 62.08±0.50
∆ (mean) +0.83 +0.73 +0.36 +0.60 -0.00 +0.76
∆ (max) +1.25 +1.66 +1.65 +1.38 +0.99 +1.37

OpenMatch [18] 58.70±8.71 55.60±5.09 47.90±2.64 73.82±0.16 74.58±0.59 65.89±0.20
w/ WiseOpen-E † 65.25±9.16 49.97±5.71 53.10±4.32 75.23±0.49 76.12±0.72 66.41±0.15
w/ WiseOpen-E ‡ 60.28±4.63 51.05±4.18 48.65±7.29 75.24±0.34 75.43±1.39 66.84±0.35
w/ WiseOpen-L † 55.33±4.99 49.70±4.45 44.14±3.55 74.59±0.40 76.26±1.02 66.71±0.57
w/ WiseOpen-L ‡ 58.40±4.77 47.31±3.68 43.95±1.74 74.88±0.72 74.92±1.63 67.33±0.21
∆ (mean) +1.11 -6.09 -0.44 +1.17 +1.10 +0.93
∆ (max) +6.55 -4.55 +5.20 +1.42 +1.68 +1.44

IOMatch [37] 44.54±0.29 48.02±0.87 61.80±2.33 67.44±0.88 69.49±0.32 62.73±0.28
w/ WiseOpen-E † 42.51±2.22 48.34±0.96 61.49±2.17 65.99±0.14 69.36±0.48 62.96±0.56
w/ WiseOpen-E ‡ 43.10±1.12 48.23±0.45 63.45±1.04 66.74±0.50 69.67±0.10 62.43±0.22
w/ WiseOpen-L † 44.23±1.74 48.45±1.05 60.58±1.18 67.04±0.43 69.43±0.53 62.66±0.60
w/ WiseOpen-L ‡ 42.67±0.54 47.60±1.23 60.90±1.35 66.83±0.45 69.63±0.32 62.20±0.64
∆ (mean) -1.41 +0.13 -0.20 -0.79 +0.03 -0.17
∆ (max) -0.31 +0.43 +1.65 -0.40 +0.18 +0.23

the computation of gradient variance for each unlabeled
instance in every epoch. Therefore, to extensively validate
our proposed method, together with the consideration of the
computational cost, we compare all SSL and OSSL baselines
with WiseOpen’s variants on top of their original algorithm.
Note that FixMatch and FreeMatch can actually be seen as
two variants of WiseOpen-L with their specific techniques
as we mentioned in Section 3.5. Thus, for the SSL methods,
we omit the WiseOpen-L experiments and only conduct
WiseOpen-E experiments. The results are reported in Table 4
and Table 5, where the number of labels per seen class is
provided for each column. In all settings, the first 60% of
classes are taken as seen classes. From these results, we can
obtain the following observations:

(1) Focusing on the ID classification performance among
different methods, the Labeled Only method usually
has the poorest performance, because of its no access
to the open-set data. Being beneficial from the friendly

data in the open-set data, traditional SSL methods and
OSSL methods can achieve better performance in most
cases, while our proposed frameworks can usually fur-
ther enhance their performance since we exclude some
unfriendly open-set data in the training procedure.

(2) Comparing the ID classification performance among
our proposed WiseOpen and its two variants, we
can observe that WiseOpen can make more sound
improvements, particularly when the threshold is an
adaptive threshold like the Otsu threshold. Meanwhile,
WiseOpen-E and WiseOpen-L are also competent in
improving the performance of the models in most sce-
narios with more acceptable extra training costs.

(3) By simultaneously considering the performance of ID
classification and OOD detection, it appears that there
is no necessary correlation between these two abil-
ities. The algorithms with the best ID classification
performance do not consistently exhibit excellent OOD
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(b) WiseOpen-E ‡ on top of IOMatch

Fig. 3: ID Classification performance of WiseOpen-E ‡ with
different losses used in GV-SM on top of OpenMatch and
IOMatch. Models are trained with CIFAR-100 at 50 labels.

detection performance and sometimes even perform
poorly in distinguishing the ID instances from OOD
instances. This phenomenon implicitly shows that the
key point of handling the open-set data to enhance
the ID classification performance lies in selecting and
exploiting the friendly open-set data rather than simply
detecting and discarding all OOD instances.

In summary, the main experiment results convincingly
demonstrate the effectiveness of our proposed frameworks
and correspond with our core idea that we should wisely
leverage the open-set data to obtain valuable from the
friendly open-set data while preventing being contaminated
by the unfriendly ones.

4.3 Ablation Study
Comparison of GV-SM by Different Losses. OSSL meth-
ods with OOD detection modules typically incorporate
two components in their unsupervised loss to optimize
the modeling in the ID domain and the open-set domain
respectively. Here we name the two components as Lid

and Lood respectively. For example, in OpenMatch, Lid and
Lood will be Lfm in Eq.6, and the sum of Lem in Eq.4 and
Loc in Eq.5 respectively. For IOMatch, Lid and Lood will
be the Lui and Lop, which are the cross-entropy loss for
K-classification and (K + 1)-classification by considering
all unseen classes as a single novel class respectively. We
perform the experiments of WiseOpen-E ‡ on top of Open-
Match and IOMatch with different losses used in GV-SM,
using CIFAR-100 at 50 labels. As shown in Figure 3, we
can observe that utilizing the whole unsupervised loss can
promote the model to better performance compared with
using single Lid or Lood, which is corresponding to our
theoretical analysis.

TABLE 6: ID classification accuracy (in %) of WiseOpen-
E and WiseOpen-L on top of OpenMatch and IOMatch in
varying mismatching scenarios of CIFAR100 with 50 labels.

Mismatching ratios 0.4 0.5 0.6 0.7

OpenMatch 70.53 73.18 76.18 79.20
w/ WiseOpen-E † 71.85 73.68 77.40 78.93
w/ WiseOpen-E ‡ 71.37 74.06 76.17 79.20
w/ WiseOpen-L † 71.88 73.76 77.70 79.43
w/ WiseOpen-L ‡ 71.53 73.14 76.70 78.67
∆ (mean) +1.13 +0.48 +0.81 -0.14
∆ (max) +1.35 +0.88 +1.52 +0.23

IOMatch 70.53 72.74 74.98 77.63
w/ WiseOpen-E † 70.88 73.20 75.52 76.90
w/ WiseOpen-E ‡ 70.73 73.04 75.35 77.20
w/ WiseOpen-L † 71.02 72.90 75.32 78.27
w/ WiseOpen-L ‡ 70.93 73.02 75.07 78.13
∆ (mean) +0.36 +0.30 +0.34 -0.00
∆ (max) +0.49 +0.46 +0.54 +0.64

Sensitivity Analysis on Mismatching Ratio. To further
demonstrate the robustness of our proposed frameworks,
we conduct experiments on CIFAR-100 at 50 labels per class
with varying class-mismatching ratios. Specifically, we eval-
uate the ID classification performance of WiseOpen-E and
WiseOpen-L on top of OpenMatch and IOMacth along with
the vanilla OpenMatch and IOMacth with varying values
of K ∈ {60, 50, 40, 30}, i.e., the mismatching ratio varies
from 0.4 to 0.7. The experimental results are summarised in
Table 6. We can observe that our proposed frameworks can
enhance the ID classification capability in most cases, which
demonstrates that our proposed frameworks are robust
across different class-mismatching ratios.

Effects of Various Optimizers. As summarized in Ta-
ble 7, we provide the ID classification performance of
WiseOpen-E and WiseOpen-L on top of OpenMatch and
IOMacth along with their vanilla versions, using the Adam
optimizer and RMSProp optimizer. The initial learning rate
is set as 0.0003 across all experiments and other hyper-
parameters remain the same as reported in Section 4.1. 50 la-
bels per class are utilized in all datasets. As we can observe,
our proposed methods successfully make improvements
in most benchmarks but the performance of WiseOpen-E
is not as stable as when using the SGD optimizer. This
phenomenon is reasonable since our proposed GV-SM is
built upon the theoretical analysis based on the stochastic
gradient used in SGD.

4.4 Expansion on OOD Detection
Except for solving the ID classification problem, it’s worth
noting that models trained using most OSSL algorithms
typically also develop the capability of OOD detection.
In this subsection, we aim to explore the impact of our
proposed frameworks on the models’ capacity to detect
various OOD instances. Specifically, we evaluate the OOD
detection performance of our proposed frameworks on the
OOD datasets that are not encountered during the train-
ing procedure. Following [66], we employ six benchmarks



11

TABLE 7: ID classification accuracy (in %) employing Adam optimizer and RMSProp optimizer. 50 labels per seen class are
utilized in training models.

CIFAR-10 CIFAR-100 Tiny-ImageNet

Algorithms Adam RMSProp Adam RMSProp Adam RMSProp

OpenMatch 78.78 78.57 70.07 68.83 48.10 47.42
w/ WiseOpen-E † 73.10 76.88 69.77 69.52 47.98 47.98
w/ WiseOpen-E ‡ 74.00 76.20 70.28 68.45 47.77 46.90
w/ WiseOpen-L † 81.67 78.93 71.12 68.40 48.18 47.13
w/ WiseOpen-L ‡ 81.07 82.40 71.47 69.97 48.35 47.57
∆ (mean) -1.32 +0.04 +0.59 +0.25 -0.03 -0.02
∆ (max) +2.88 +3.83 +1.40 +1.13 +0.25 +0.57

IOMatch 90.27 91.78 70.60 70.32 45.35 45.28
w/ WiseOpen-E † 91.37 91.18 70.75 70.73 46.33 45.03
w/ WiseOpen-E ‡ 90.55 91.83 70.85 70.53 46.13 44.63
w/ WiseOpen-L † 90.00 92.32 70.83 70.62 46.00 45.30
w/ WiseOpen-L ‡ 89.75 91.05 70.68 70.70 46.40 45.23
∆ (mean) +0.15 -0.19 +0.18 +0.33 +0.87 -0.23
∆ (max) +1.10 +0.53 +0.25 +0.42 +1.05 +0.02

TABLE 8: Evaluation of OOD detection on OOD data unseen in the training set (AUROC in %). Models are trained on
Tiny-ImageNet with 50 labeled data per class.

Unseen OOD Datasets

Algorithms LSUN DTD CUB Flowers Caltech Dogs MEAN

MTC 37.51±1.40 35.25±2.60 47.91±3.48 52.28±2.79 47.49±2.93 40.24±4.99 43.45±6.94
w/ WiseOpen-E † 39.39±7.39 37.73±2.75 48.70±0.72 55.24±3.04 51.69±0.79 44.01±3.36 46.13±7.36
w/ WiseOpen-E ‡ 41.10±11.44 37.17±1.31 48.38±4.21 49.60±3.29 50.00±3.49 36.76±1.44 43.84±7.85
w/ WiseOpen-L † 34.82±2.45 35.93±0.86 50.06±3.25 54.41±6.50 50.87±2.83 43.24±1.65 44.89±8.25
w/ WiseOpen-L ‡ 45.43±15.31 47.81±2.07 58.03±4.75 60.51±2.96 57.26±4.41 48.85±1.24 52.98±9.06
∆ (mean) +2.68 +4.41 +3.38 +2.66 +4.96 +2.97 +3.51
∆ (max) +7.92 +12.56 +10.11 +8.23 +9.77 +8.61 +9.53

OpenMatch 53.06±2.72 46.84±0.20 57.04±0.15 55.88±1.41 60.00±0.92 61.13±0.67 55.66±4.93
w/ WiseOpen-E † 54.38±1.24 47.68±1.38 58.45±1.14 55.72±2.30 61.84±1.06 59.77±1.34 56.31±4.81
w/ WiseOpen-E ‡ 56.41±0.98 49.20±2.01 59.57±1.62 57.02±2.02 62.43±0.67 59.61±1.31 57.37±4.42
w/ WiseOpen-L † 56.22±0.78 49.60±0.88 59.39±0.20 59.62±1.17 62.97±0.61 59.81±1.46 57.93±4.31
w/ WiseOpen-L ‡ 56.01±2.64 49.54±3.20 59.97±0.14 59.81±1.91 62.10±1.23 58.89±1.53 57.72±4.56
∆ (mean) +2.70 +2.16 +2.30 +2.16 +2.33 -1.61 +1.68
∆ (max) +3.35 +2.76 +2.93 +3.93 +2.97 -1.32 +2.28

IOMatch 63.88±1.76 56.53±2.11 63.10±2.07 64.52±4.22 63.71±1.15 63.71±0.53 62.57±3.56
w/ WiseOpen-E † 67.28±0.59 57.46±1.65 65.14±1.54 67.37±0.38 62.87±0.34 62.77±1.48 63.81±3.57
w/ WiseOpen-E ‡ 65.47±1.67 59.75±0.60 64.23±1.03 66.29±3.21 63.31±0.64 62.98±1.39 63.67±2.68
w/ WiseOpen-L † 66.16±3.31 57.07±2.41 66.56±0.84 67.04±2.40 63.73±1.03 63.41±0.98 63.99±3.96
w/ WiseOpen-L ‡ 64.93±2.04 57.93±2.35 64.18±1.56 68.85±0.69 63.65±0.42 62.93±1.09 63.75±3.56
∆ (mean) +2.08 +1.52 +1.93 +2.86 -0.32 -0.69 +1.23
∆ (max) +3.40 +3.22 +3.47 +4.33 +0.02 -0.30 +1.42

as OOD datasets unseen in training, namely, LSUN [67],
DTD [68], CUB-200 [69], Flowers [70], Caltech [71], and
Dogs [72], for models trained on Tiny-ImageNet with 50
labels per seen class. AUROC is employed to evaluate the
detection performance. As summarized in Table 8, we can
observe that our proposed frameworks can promote the
OOD detection performance of the majority of the unseen

OOD instances. For instance, in terms of the mean OOD
detection performance across all unseen datasets, our frame-
works demonstrate an average improvement of 3.51% and
a maximum improvement of 9.53% for MTC. This suggests
that our proposal is sufficiently safe and will not compro-
mise the potential OOD detection capability of the original
model; in fact, it may even enhance it.
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TABLE 9: Comparison of ID classification accuracy (in %) among IOMatch (reduced), the proposed WiseOpen variants on
top of IOMatch (reduced), and full IOMatch. 50 labels per seen class are utilized in training models.

Datasets CIFAR-10 CIFAR-100 Tiny-ImageNet

IOMatch 91.90 70.53 47.68

IOMatch (reduced) 91.47 69.97 46.75
w/ WiseOpen-E † 91.40 70.85 47.13
w/ WiseOpen-E ‡ 91.18 70.67 47.00
w/ WiseOpen-L † 91.55 70.53 46.83
w/ WiseOpen-L ‡ 91.40 70.47 47.37
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(a) Confusion matrices of WiseOpen-E ‡ on top of OpenMatch BEFORE GV-SM in epoch 50, 250, 450, accordingly.

airplane automobile bird cat deer dog unseen
Pseudo Labels

airplane

automobile

bird

cat

deer

dog

unseen

Tr
ue

 L
ab

el
s

0.61 0.0059 0.0059 0 0.0023 0.00045 0.38

0.00041 0.89 0 0 0 0.00021 0.11

0.031 0 0.45 0.0016 0.092 0.0033 0.43

0.0014 0.0017 0.0054 0.14 0.018 0.046 0.78

0.0031 0.00022 0.0055 0.00088 0.74 0.0013 0.25

0.0005 0.0025 0.0096 0.0061 0.051 0.54 0.39

0.039 0.016 0.0049 0.00088 0.19 0.0025 0.75

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

airplane automobile bird cat deer dog unseen
Pseudo Labels

airplane

automobile

bird

cat

deer

dog

unseen

Tr
ue

 L
ab

el
s

0.67 0.00043 0.0013 0 0.00065 0.00022 0.33

0.00021 0.9 0 0 0 0 0.1

0.034 0.00023 0.61 0.00023 0.013 0.00069 0.34

0.0026 0.00026 0.0039 0.31 0.015 0.02 0.65

0.0055 0.00022 0.0037 0.00022 0.85 0.0013 0.14

0.00047 0.00024 0.0012 0.0014 0.053 0.57 0.37

0.0033 0.0085 0.0032 0.00036 0.22 0.0013 0.76

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

airplane automobile bird cat deer dog unseen
Pseudo Labels

airplane

automobile

bird

cat

deer

dog

unseen

Tr
ue

 L
ab

el
s

0.62 0.00022 0.0026 0.00022 0.00066 0.00022 0.38

0.00021 0.89 0 0 0 0 0.11

0.028 0 0.65 0.00023 0.011 0.00023 0.31

0.0012 0 0.0012 0.3 0.013 0.0099 0.67

0.00043 0 0.00043 0.00021 0.88 0.00064 0.12

0.00023 0.00045 0.00045 0.0014 0.049 0.46 0.49

0.0015 0.005 0.0012 0.00012 0.23 0.00031 0.76

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(b) Confusion matrices of WiseOpen-E ‡ on top of OpenMatch AFTER GV-SM in epoch 50, 250, 450, accordingly.

Fig. 4: Visualization of the confusion matrices on the unlabeled training set of CIFAR-10.

4.5 Further Analysis
Comparison between Existing Selection Mechanisms. Ex-
isting OSSL methods typically apply some OOD detection
techniques as selection mechanisms tailored for one specific
loss. Previous experimental results in Table 4 have success-
fully demonstrated that our proposed selection mechanism
is orthogonal and complementary to prior selection mech-
anisms that can improve previous algorithms’ performance
after effortlessly embedding our proposal. In consideration
of the completeness, we further perform the experiments of
IOMatch (reduced), which omits the OOD data exclusion
process while calculating the ID classification loss Lui. As
summarized in Table 9, we can observe that our proposed
selection mechanism can improve the ID classification per-
formance of IOMatch (reduced) in most cases. However,
IOMatch (reduced) plus our selection mechanisms do not
always outperform the full IOMatch. The reason may lie in
that the OOD data exclusion is specifically tailored for the
unlabeled inlier loss and the omission of such exclusion can

potentially introduce biases to ID classification by misclas-
sifying OOD data to seen classes. Our selection mechanism
can alleviate the influence and improve the model’s per-
formance by selectively leveraging friendly data. However,
in some datasets, the negative impacts of discarding OOD
detection may be greater than the positive effect brought
by our selection mechanism. Therefore, in some instances,
the OOD data exclusion may appear to be more effective,
while in others, our proposed selection mechanism may lead
to more significant improvements. Overall, these empirical
results show that although not tailored for the specific loss,
our proposal is effective and robust, and can further enhance
the model’s capability which already utilizes the tailored
selection in the training procedure.

Analysis of GV-SM. To further analyse the effectiveness
of our proposal, Figure 4 visualizes the confusion matrix
of the unlabeled training set before and after applying GV-
SM. We can observe that after applying GV-SM, the model
can utilize the open-set data set with higher pseudo-labeling
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accuracy on the seen classes. Meanwhile, the mismatching
from unseen classes to the seen class deer slightly increases.
Upon further investigation, we have discovered that among
the unseen classes frog, horse, ship, and truck, the mismatch
from horse to deer contributes to the overwhelming majority
of mismatches from unseen classes to deer with ratios reach-
ing 98.41%, 99.27%, and 99.81% for epochs 50, 250, and 450,
respectively. Intuitively, this type of mismatch is unlikely to
negatively impact the distinction between deer and other
seen classes, and it may even enhance this distinction by
facilitating the learning of similar representations between
horses and deer, which are distinct from other seen classes.

5 CONCLUSION

In this paper, we tackled the realistic OSSL scenario, where
models can suffer from performance degradation if reck-
lessly utilize all open-set data which contain instances from
unseen classes. Motivated by theoretical insights, we high-
light the significance of selectively leveraging open-set data
and propose a novel OSSL framework called WiseOpen
which wisely leverages the open-set data by using GV-SM.
GV-SM enables the model to exclude potentially unfriendly
open-set training data with large gradient variance, thereby
helping to maintain the purity of the learned knowledge.
Furthermore, we also proposed two variants of WiseOpen
dubbed WiseOpen-E and WiseOpen-L to mitigate the huge
computing cost issue. Sufficient empirical results have
demonstrated the effectiveness of our proposal.
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