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Abstract

Most existing methods for training-free Open-Vocabulary
Semantic Segmentation (OVSS) are based on CLIP. While
these approaches have made progress, they often face chal-
lenges in precise localization or require complex pipelines
to combine separate modules, especially in remote sens-
ing scenarios where numerous dense and small targets are
present. Recently, Segment Anything Model 3 (SAM 3)
was proposed, unifying segmentation and recognition in a
promptable framework. In this paper, we present a prelim-
inary exploration of applying SAM 3 to the remote sensing
OVSS task without any training. First, we implement a mask
fusion strategy that combines the outputs from SAM 3’s se-
mantic segmentation head and the Transformer decoder (in-
stance head). This allows us to leverage the strengths of
both heads for better land coverage. Second, we utilize the
presence score from the presence head to filter out cate-
gories that do not exist in the scene, reducing false positives
caused by the vast vocabulary sizes and patch-level pro-
cessing in geospatial scenes. We evaluate our method on
extensive remote sensing datasets. Experiments show that
this simple adaptation achieves promising performance,
demonstrating the potential of SAM 3 for remote sensing
OVSS. Our code is released at https://github.com/
earth—-insights/SegEarth—-0OV-3.

1. Introduction

Semantic segmentation is a fundamental task in remote
sensing analysis, enabling dense, pixel-level understanding
of Earth observation scenes. Traditionally, segmentation
models were restricted to a closed set of predefined cate-
gories, limiting their applicability in dynamic, open-world
scenarios where visual concepts are virtually infinite. To
overcome this limitation, Open-Vocabulary Semantic Seg-
mentation (OVSS) has emerged as a critical research di-

Corresponding author (caoxiangyong @mail.xjtu.edu.cn)
This report is only a preliminary version; more details and further ex-
ploration will be included in future updates.

2 Chinese Academy of Sciences

rection [40]. By leveraging the rich semantic knowledge
embedded in pre-trained Vision-Language Models (VLMs),
remote sensing OVSS aims to segment and recognize image
regions based on arbitrary text descriptions, effectively gen-
eralizing to categories unseen during training. This capa-
bility is essential for diverse applications, e.g., urban plan-
ning [37] and disaster monitoring [57], where the model
must handle a vast vocabulary [38—40].

Currently, the dominant paradigm for training-free
OVSS relies heavily on VLMs, particularly CLIP [48].
Early works, such as MaskCLIP [72] and SCLIP [55], at-
tempt to extract dense features directly from the CLIP im-
age encoder. However, CLIP is pre-trained for image-level
classification, and adapting its patch-level features for pixel-
level localization often results in coarse boundaries. To ad-
dress this, subsequent research has focused on integrating
auxiliary Visual Foundation Models (VFMs). For instance,
ProxyCLIP [34] and CorrCLIP [70] utilize structural guid-
ance from DINO [47] and SAM [32] to refine CLIP’s atten-
tion maps, while SegEarth-OV [39, 40] builds an upsam-
pler to reconstruct high-resolution features. Although these
methods improve boundary quality, they rely on complex
pipeline and feature alignment to bridge the gap between
different representations. Moreover, they lack simultane-
ous semantic and instance segmentation capabilities, limit-
ing their utility in complex geospatial analysis.

Recently, the Segment Anything Model 3 (SAM 3) [10]
was introduced. Unlike CLIP-based paradigm, SAM 3 is a
unified model that supports promptable concept segmenta-
tion. It builds upon the DETR [9] and MaskFormer [16, 17]
architectures, employing a query-based Transformer de-
sign. Crucially, SAM 3 utilizes a decoupled architecture
in which a presence head is specifically designed to pre-
dict the probability that the prompted concept exists in the
image. Meanwhile, a Transformer decoder and a semantic
segmentation head generate precise masks for discrete in-
stances and continuous semantic regions, respectively. Al-
though SAM 3 demonstrates impressive zero-shot capabil-
ities on some natural image semantic segmentation bench-
marks, remote sensing images present distinct challenges,
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e.g., the intricate coexistence of dense small objects and vast
amorphous backgrounds. Therefore, a tailored exploration
to adapt SAM 3 for geospatial scenarios remains valuable.
In this paper, we present a preliminary exploration of
adapting SAM 3 for the remote sensing OVSS task without
additional training. We investigate whether SAM 3’s uni-
fied architecture can offer a stronger, yet simpler baseline
than complex CLIP-ensemble methods for Earth observa-
tion. Our proposed method, namely SegEarth-OV3, con-
sists of two simple strategies tailored to SAM 3’s design:

¢ (1) Dual-Head Mask Fusion: Remote sensing images
exhibit a distinct duality: amorphous “stuff” (e.g., road,
bareland) requiring pixel-wise semantic continuity, and
countable “things” (e.g., buildings, vehicles) demanding
instance-level boundary precision. We identify that SAM
3’s decoupled architecture naturally aligns with this dual-
ity. We propose to assign the semantic head to maintain
land-cover completeness and the Transformer decoder
to capture fine-grained instance details, thereby unifying
these complementary strengths to ensure robust segmen-
tation across diverse geospatial targets.

¢ (2) Presence-Guided Filtering: In remote sensing
OVSS, a complete vocabulary list might include global
land cover types, but a single image patch covers a minute
geographical area (e.g., hundreds of meters). This re-
sults in a high category sparsity, where the vast major-
ity of queried concepts are physically absent in the lo-
cal view. We leverage the presence score to address this
global-local discrepancy, explicitly suppressing irrelevant
categories to eliminate false positives caused by the vast
vocabulary against limited visual content [14, 53].

We evaluate our approach on 17 remote sensing semantic
segmentation benchmarks and some general segmentation
benchmarks. Our results demonstrate the strong capability
of SAM 3 for remote sensing OVSS, which is further en-
hanced by our proposed improvements.

2. Related Work

2.1. Training-based OVSS

Training-based OVSS methods fine-tune pre-trained VLMs
on annotated datasets, typically adopting either a mask
classification or a dense feature adaptation paradigm.
Mask classification methods, including OpenSeg [24],
OVSeg [41], ZegFormer [21], and MasQCLIP [66], etc.,
leverage generated class-agnostic masks for subsequent
CLIP classification. In contrast, dense feature adaptation
methods, ranging from early pixel-alignment works like
LSeg [35] to advanced adapter-based models like SAN [65],
SED [62] and CAT-Seg [18], refine CLIP’s feature maps
directly for dense prediction via side networks or cost
aggregation. Other methods such as SegCLIP [43] and
GroupViT [64] explore weakly-supervised grouping from

=Sl i

(b) Amorphous regions (e.g., road).

Figure 1. The Transformer decoder of SAM 3 excels at delineat-
ing countable objects but produces fragmented masks for amor-
phous regions, while the semantic head preserves continuity for
amorphous regions but lacks boundary precision for small targets.
(Left: Remote sensing image. Middle: Prediction of Transformer
Decoder. Right: Prediction of semantic segmentation head.)

image-text pairs. Despite achieving strong performance,
these methods require computationally expensive training
on large-scale datasets, limiting their flexibility compared
to training-free alternatives.

2.2, Training-free OVSS

To avoid training costs, training-free methods directly adapt
pre-trained VLMs for dense prediction. Pure CLIP-based
methods such as SCLIP [55] and ClearCLIP [33] mod-
ify the internal mechanisms of CLIP, e.g., removing pool-
ing layers or refining self-attention maps, to extract dense
features [5, 26, 29, 72]. However, due to CLIP’s image-
level pre-training objective, these methods often suffer from
coarse localization. To address this, the VFM-assisted
methods [3, 31, 34, 51, 70] integrate auxiliary models like
DINO [11, 47] or SAM [32, 49] to provide structural guid-
ance. By utilizing attention maps or object proposals from
these foundation models, they achieve clearer boundaries.
However, these methods operate as disjointed pipelines,
relying on separate, heavy models for segmentation and
recognition, which leads to significant system complexity.

2.3. Remote Sensing OVSS

Extending OVSS to remote sensing images faces unique
challenges, such as extreme scale variations and arbitrary
orientations, which often degrade the performance of meth-
ods designed for natural images. To mitigate the coarse lo-
calization of CLIP, recent methods like SegEarth-OV [40]
and GSNet [69] employ feature upsampling modules or
dual-stream architectures to incorporate domain-specific
priors, while SkySense-O [74] advances this by pre-training
vision-centric VLMs on large-scale remote sensing data.
Addressing the specific geometric complexities of aerial
views, Cao et al. [8] introduce rotation-aggregative modules
to handle orientation diversity. Furthermore, AerOSeg [22]
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Figure 2. The overall inference pipeline of SegEarth-OV3. Given an input image and a list of text prompts, we leverage SAM 3’s decoupled
outputs. The pipeline involves: (1) instance aggregation to consolidate sparse object queries; (2) dual-head mask fusion to combine the
fine-grained instance details with the global coverage of the semantic head; and (3) presence-guided filtering (using the presence score) to
suppress false positives from absent categories. @y denotes the element-wise maximum operation, and (x) denotes multiplication.

and SCORE [27] leverage SAM features for structural guid-
ance and regional context, while RemoteSAM [68] and In-
structSAM [71] utilize SAM-based pipelines to unify seg-
mentation with broader interpretation tasks. However, these
methods typically rely on complex multi-stage pipelines or
require expensive domain-specific training. In contrast, we
explore SAM 3 as a unified, training-free framework to sim-
plify remote sensing OVSS.

3. Methods

3.1. Preliminaries

We adopt SAM 3 as our foundational architecture. Un-
like standard semantic segmentors that map an image I €
RAXWX3 directly to a label map L € R7*W SAM 3 op-
erates as a prompt-conditioned predictor. Given an image [
and a specific text prompt ¢ (e.g., a category name “build-
ing”), the model predicts the probability that a pixel or re-
gion belongs to the concept defined by ¢. Architecturally,
SAM 3 consists of a vision encoder and a text encoder that
extract image embeddings and text embeddings, respec-
tively. These are processed by a Fusion Encoder, which
outputs prompt-conditioned image features Fi,,q. Based
on Fi,,q, the model utilizes three decoupled heads to gen-
erate predictions:

* Presence Head: Predicts a scalar score Spcs € [0,1],
indicating the global probability that the concept ¢ exists

in the image.

* Semantic Segmentation Head: A dense prediction mod-
ule (FCN-style) that maps F,,4 to a semantic probability
map Piep, € [0, 1]HXW,

¢ Transformer Decoder (Instance Head): A query-based
module that outputs a set of N instance predictions

(PO, s8) I, Here, P), € [0,1]%W s the
(k)
S

probability map for the k-th object query, and s, f

[0, 1] is its associated confidence score.

For OVSS, a naive baseline is to rely solely on the in-
stance predictions from the Transformer decoder [10], ag-
gregating them to form a segmentation mask. However, in
remote sensing, this baseline often overlooks amorphous re-
gions and is prone to false positives when querying a large
vocabulary. Motivated by this, we introduce some strategies
to address these limitations.

3.2. Inference Pipeline

We propose a training-free inference strategy designed to
tackle the specific challenges of OVSS in remote sensing
scenarios, as shown in Figure 2. Our pipeline processes
each category in the vocabulary V sequentially and aggre-
gates the results into a final segmentation map.

Instance Aggregation. Remote sensing scenes often con-
tain dense clusters of small, identical objects (e.g., vehi-
cles in a parking lot, ships in a harbor). Standard semantic
segmentation methods often leads to boundary adhesion in



dense clusters. To address this, we first leverage the Trans-
former decoder, which treats objects as discrete queries,
effectively isolating individual instances even in crowded
scenes. It generates a set of NV discrete instance predic-

tions {(P, l(fzt, Cizb f)} r_1- We aggregate these sparse pre-
dictions into a single category-level map P, s; 44 by taking

the maximum weighted probability at each pixel:

(k) (k)
Pinst.agg(h, w) = rl?ax <Pmst(h w) - conf) Y

This aggregation effectively consolidates individual ob-

ject instances into a unified semantic layer, preserving the
fine-grained localization capabilities of the instance head
even in crowded scenes.
Dual-Head Mask Fusion. While the instance head ex-
cels at delineating countable objects (“things”), it may pro-
duce fragmented predictions for large-scale continuous and
amorphous regions (“stuff”) like road or bareland, which
are prevalent in remote sensing images, as shown in Fig-
ure 1. Conversely, the semantic head provides dense, global
coverage but often blurs the boundaries of small targets or
misses them entirely. To reconcile these complementary
strengths, we fuse the aggregated instance map Pjnst_agg
with the dense probability map Pk, from the semantic
head using a max-fusion strategy:

Pfused(ha U)) = max (Psem(h7 U)), Pinst,agg(hv ’LU)) . (2)

This fusion ensures robust segmentation performance

across diverse categories, capturing both the distinct bound-
aries of small instances and the completeness of large-scale
amorphous regions.
Presence-Guided Filtering. A critical challenge in OVSS
arises from querying a massive global vocabulary against a
localized image patch. Although the vocabulary V might
enumerate a comprehensive list of global land-cover types
(e.g., various biomes, infrastructure), a single inference
patch restricts the view to a small geographical extent (e.g.,
a few hundred meters). This results in a high category spar-
sity, where the valid targets in a given image are only a
small subset of V. The model becomes prone to halluci-
nating absent categories due to textural ambiguities com-
mon in geospatial data, e.g., confusing “barren land” with
“sports field”. To mitigate this, we utilize the global pres-
ence score Sy, to explicitly suppress irrelevant categories.
We apply a soft gating operation, P}”)ml P;Cuse R
which reduces the weight of the probability maps of cate-
gories predicted to be absent. Finally, we assign each pixel
to the category with the highest probability:

M(h,w) = arg max fmaz(h w). (3)
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Figure 3. Impact of vocabulary size and our filtering strategy.
Querying a vast vocabulary introduces severe noise due to distract-
ing candidates (b to c¢). Our presence-guided filtering leverages
presence scores to suppress absent categories, effectively elimi-
nating interference and restoring segmentation quality.

To handle ambiguous regions, pixels with a maximum
probability below a threshold 7 are assigned to the “back-
ground” category (if it exists). Note that for categories with
multiple prompts, we select the one with the highest proba-
bilities to ensure robustness.

4. Experiments

4.1. Setup

Datasets. Following SegEarth-OV [40], we evaluate our
method on 17 remote sensing datasets, covering diverse
scenes, resolutions, and tasks.

* Semantic Segmentation: We use eight benchmarks (Ope-
nEarthMap [61], LoveDA [56], iSAID [58], Potsdam,
Vaihingen', UAVid [44], UDDS5 [15] and VDD [7]) to as-
sess multi-class segmentation performance across satel-
lite, aerial, and UAV platforms.

e We further test on nine binary extraction datasets fo-
cusing on critical geospatial objects: building extrac-
tion (WHUA€™ @ [28], WHUS*-II [28], Inria [45], and
xBD [25]), road extraction (CHN6-CUG [73], Deep-
Globe [20], Massachusetts [46], and SpaceNet [54]), and
flood detection (WBS-SI?).

Additionally, we report results on general scene datasets
(Pascal VOC20 [23], COCO Stuff [6], and Cityscapes [19])
to demonstrate universality. The evaluation metric is mloU
for multi-class segmentation and IoU of the foreground
class for binary extraction tasks.

Implementation Details. We use the official SAM 3 model
equipped with the Perception Encoder-Large+ (PE-L+) [4]
backbone. Input images are resized to 1008x1008. Text
prompts are derived directly from category names (e.g.,

Uhttps://www.isprs.org/education/benchmarks/UrbanSemLab
Zhttps://www.kaggle.com/datasets/shirshmall/water-body-
segmentation-in-satellite-images



Table 1. Open-vocabulary semantic segmentation quantitative comparison on remote sensing datasets. Evaluation metric: mloU. Best and
second best performances are highlighted. SCAN, SAN, SED, Cat-Seg, OVRS, GSNet, RSKT-Seg are tuned on dataset (7,002 images with
17 categories). SkySense-O is tuned on Sky-SA dataset (35,000 images with 1,763 categories). “Oracle” is achieved by a fully supervised

SegFormer-b0 [63] model using full training data.

Methods OpenEarthMap LoveDA iSAID Potsdam Vaihingen UAVid®™ UDDS5S VDD ‘ Avg
Training on remote sensing segmentation data
SCAN 0000 [42] - 23.2 443 27.5 15.2 20.3 34.1 29.2 -
SAN 05 [65] - 25.3 49.6 37.3 39.2 23.5 37.2 35.8 -
SED 000 [62] - 24.6 51.2 29.4 39.0 21.3 35.7 32.5 -
Cat-Seg 0. [18] - 28.6 53.3 35.8 423 25.7 40.2 39.1 -
OVRS, o005 [8] - 31.5 52.7 36.4 43.5 24.1 40.8 37.2 -
GSNet,, .5 [69] - 32.5 53.7 37.9 44.1 24.2 40.9 37.3 -
RSKT-Seg, .05 [36] - 332 54.3 38.4 42.7 25.7 42.1 39.7 -
SkySense-O s [74] 40.8 38.3 43.9 54.1 51.6 - - - -
Training-free
CLIP, 00, [48] 12.0 12.4 7.5 15.6 10.8 10.9 9.5 142 | 114
MaskCLIP, ..., [72] 25.1 27.8 14.5 339 29.9 28.6 324 329 | 272
SCLIP, (-0, [55] 29.3 30.4 16.1 39.6 359 314 38.7 379 | 31.1
GEM_,1:00. [5] 339 31.6 17.7 39.1 36.4 334 41.2 39.5 | 32.3
ClearCLIP, .., [33] 31.0 324 18.2 42.0 36.2 36.2 41.8 39.3 | 334
SegEarth-OV .,.,5 [40] 40.3 36.9 21.7 48.5 40.0 42.5 50.6 453 | 39.2
ProxyCLIP, .- [34] 38.9 343 21.8 49.0 47.5 35.8 40.8 47.8 | 39.5
CorrCLIP, 5 [70] 329 36.9 25.5 51.9 47.0 38.3 46.1 47.3 | 40.7
SegEarth-OV3 429 47.4 27.6 57.8 60.8 54.7 71.7 64.5 | 534

Table 2. Open-vocabulary building / road / flood extraction quantitative comparison on remote sensing datasets. Evaluation metric: IoU of
the foreground class, i.e. building, road or flood. Best and second best performances are highlighted.

Method Building Extraction Road Extraction Flood Detection
WHUAerel  WHUS I Inria xBDP™ | CHN6-CUG  DeepGlobe Massachusetts ~ SpaceNet WBS-SI
CLIP [48] 17.7 35 19.6 16.0 7.7 39 49 7.1 18.6
MaskCLIP [72] 29.8 14.0 33.4 29.2 28.1 132 10.6 20.8 39.8
SCLIP [55] 33.4 21.0 349 259 21.1 7.0 74 14.9 32.1
GEM [5] 24.4 13.6 28.5 20.8 13.4 4.7 5.1 11.9 39.5
ClearCLIP [33] 36.6 20.8 39.0 30.1 255 5.7 6.4 16.3 449
SegEarth-OV [40] 49.2 28.4 44.6 37.0 354 17.8 11.5 23.8 60.2
SegEarth-OV3 86.9 4.2 724 64.3 ‘ 49.6 39.3 271 35.6 ‘ 75.6

“building”, “road”), and some categories are augmented
with synonyms®. The background threshold 7 and the ini-
tial confidence threshold for the Transformer decoder are
manually tuned for each dataset to achieve roughly optimal
performance. No test-time augmentation and extra post-
processing method [1] is used.

4.2. Main Results

Semantic segmentation. We report the quantitative com-
parison on eight remote sensing semantic segmentation
benchmarks in Table 1. Our method, SegEarth-OV3,

3The prompt setting is manually curated based on dataset features and
has not been systematically explored in this version.

achieves a new state-of-the-art, demonstrating a substan-
tial performance leap over existing methods. Specifically,
it achieves an average mloU of 53.4%, surpassing the best
previous training-free method, CorrCLIP (40.7% mloU),
by a remarkable margin of +12.7% mloU. This perfor-
mance also consistently outperformed training-based OVSS
methods fine-tuned on remote sensing data, e.g., RSKT-Seg
(39.7% mloU) and Cat-Seg (39.1% mloU). A notable ob-
servation is that our zero-shot method outperforms the fully
supervised Oracle on some datasets. On UDDS5 and VDD
datasets, SegEarth-OV3 achieves 71.7% mloU and 64.5%
mloU respectively, exceeding the Oracle baselines (56.5%
and 62.9% mloU). This surprising result suggests that the
rich semantic knowledge and robust segmentation capabil-



Table 3. Ablation study on dual-head mask fusion. “Instance
Only” denotes using predictions solely from the Transformer de-
coder, while “Semantic Only” relies exclusively on the semantic
segmentation head. Bold indicates the best performance.

Method LoveDA Uavid xBDP™ CHN6-CUG
Instance Only 322 50.4 61.4 38.4
Semantic Only 354 471 44.9 39.5
SegEarth-OV3 474 54.7 64.3 49.6

Table 4. Comparison with state-of-the-art OVSS methods on Pas-
cal VOC20, COCO Stuff, and Cityscapes benchmarks. Bold indi-
cates the best performance.

Method Size ‘ VOC20 Stuff City
Training-based
TCL [12] 83.2 224 240
CLIP-DINOiser [60] 80.9 24.6  31.7
CoDe [59] ViT-B/16 - 239 289
CAT-Seg [18] 94.6 - -
Training-free

CLIP =[48] 41.9 4.4 5.0
MaskCLIP [72] 74.9 164 12.6
ClearCLIP [33] 80.9 239 300
SCLIP [55] 80.4 224 322
ProxyCLIP [34] 80.3 26.5 38.1
LaVG [30] 82.5 232 262
CLIPtrase [50] . 81.2 24.1 -

NACLIP [26] VITB/I6 | o350 257 383
Trident [51] 84.5 283 429
ResCLIP [67] 86.0 247 359
SC-CLIP [2] 84.3 26.6 41.0
CLIPer [52] 85.2 27.5 -

CASS [31] 87.8 26.7 394
CorrCLIP [70] 88.8 31.6 494
FreeDA [3] 87.9 28.8  36.7
CaR [53] 91.4 - -

ProxyCLIP [34] 83.2 25.6  40.1
ResCLIP [67] ViT-L/14 85.5 234 337
SC-CLIP [2] 88.3 269 413
CLIPer [52] 90.0 287 -

CorrCLIP [70] 91.5 34.0 51.1
ProxyCLIP [34] 83.3 26.8 420
Trident [51] ViT-H/14 88.7 28.6 47.6
CorrCLIP [70] 91.8 327 499

SegEarth-OV3 PE—L+/14‘ 96.8 428 69.7

ities inherent in the SAM 3 foundation model can, in cer-
tain scenarios, exceed the generalization ability of models
trained on domain-specific data. In Figure 4, we visualize
the results on a large-scale remote sensing image.

Single-class extraction. We further evaluate the single-
class land-cover extraction capability of our method on nine

benchmarks focusing on buildings, roads, and floods (Ta-
ble 2). In building extraction, our method achieves un-
precedented gains, reaching 86.9% IoU on WHU“¢"%% and
72.4% 10U on Inria, outperforming the previous state-of-
the-art SegEarth-OV by massive margins of +37.7% and
+27.8% respectively. Similarly, for road extraction, it
consistently surpasses previous methods, achieving 49.6%
IoU on CHNG6-CUG. In the flood detection task, SegEarth-
OV3 attains 75.6% IoU, marking a +15.4% improvement.
These consistent and dramatic improvements across diverse
geospatial targets, emphasize the robustness of SegEarth-
OV3 and the generalization capability of SAM 3.

4.3. Ablation Studies

We investigate the contribution of the dual-head fusion
strategy by evaluating the performance of each head in-
dividually on four representative datasets, as listed in Ta-
ble 3. Using only Transformer decoder predictions yields
strong results on object-centric tasks like building extrac-
tion, but underperforms on complex scenes, due to strug-
gles with amorphous regions. Conversely, the “Semantic
Only” baseline struggles with precise object boundaries,
achieving only 44.9% IoU on xBD. By fusing both heads,
SegEarth-OV3 achieves significant improvements. On
LoveDA and CHN6-CUG, SegEarth-OV3 reaches 47.4%
mloU and 49.6% IoU, surpassing the best single-head base-
lines by +12.0% and +10.1%. Even on the instance-heavy
xBD dataset, fusion further boosts performance by 2.9%.
These results validate our hypothesis that the semantic and
instance heads provide complementary information, i.e.,
global coverage and fine-grained precision, and their com-
bination is essential for remote sensing OVSS.

4.4. Results on General Scene Datasets

We benchmark SegEarth-OV3 on three standard gen-
eral scene datasets: Pascal VOC20, COCO Stuff, and
Cityscapes (Table 4). For Pascal VOC20 and Cityscapes,
we refine category names to better align with visual con-
cepts; for instance, the “terrain” class in Cityscapes is ex-
panded to “grass, horizontal vegetation, soil, sand” based
on official definitions*. SegEarth-OV3 achieves dominance
across all benchmarks. On Pascal VOC20, it achieves
96.8% mloU, surpassing both the best training-free method
CorrCLIP (91.8% mloU) and the training-based CAT-Seg
(94.6% mloU). On COCO Stuff, it reaches 42.8% mloU,
significantly exceeding CorrCLIP by +8.8%. The most sig-
nificant improvement is observed on Cityscapes, where our
method achieves 69.7% mloU, representing an increase of
18.6% mloU over the previous best result. These results
further emphasize the powerful capabilities of SAM 3 and
the effectiveness of SegEarth-OV3.

“https://www.cityscapes-dataset . com/dataset -

overview
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Figure 4. Inference results of SegEarth-OV3 on a remote sensing image exceeding 10k x 10k resolution. The image originates from [13].

5. Conclusion

This paper explores the potential of SAM 3 for remote
sensing OVSS. Building upon the powerful zero-shot
capabilities of the SAM 3 foundation model, we introduce
an inference strategy to adapt its prompt-based architecture
for remote sensing OVSS. By fusing semantic and instance
outputs and leveraging presence-guided filtering, we effec-
tively address the unique challenges of remote sensing. Our
results on 20 diverse datasets show that SegEarth-OV3 not
only sets a new training-free state-of-the-art but also outper-
forms supervised baselines in specific cases. These results
highlight the significant potential of SAM 3 for specific
domain tasks and demonstrate that, through appropriate
adaptation strategies, training-free paradigms can serve as
a powerful alternative to traditional supervised learning.
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