

Continual Test-Time Domain Adaptation

Qin Wang¹ Olga Fink^{1,3*} Luc Van Gool^{1,4} Dengxin Dai²

¹ETH Zurich, Switzerland ²MPI for Informatics, Germany ³EPFL, Switzerland ⁴KU Lueven, Belgium {qin.wang, vangool, dai}@vision.ee.ethz.ch olga.fink@epfl.ch

Background

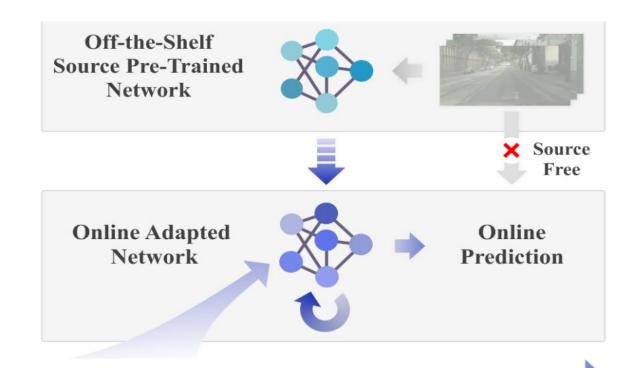


Table 1. The difference between our proposed continual test-time adaptation and related adaptation settings.

		Data	Learning					
Setting	Source	Target	Train stage	Test stage				
standard domain adaptation	Yes	stationary	Yes	No				
standard test-time training [54]	Yes	stationary	Yes (aux task)	Yes				
fully test-time adaptation [61]	No	stationary	No (pre-trained)	Yes				
continual test-time adaptation	No	continually changing	No (pre-trained)	Yes				

Background





Continually Changing Target Environment

- Existing methods, which are mostly based on selftraining and entropy regularization, can suffer from these non-stationary environments.
- Due to the distribution shift over time in the target domain, pseudo-labels become unreliable.
- The noisy pseudolabels can further lead to error accumulation and catastrophic forgetting.

Methods

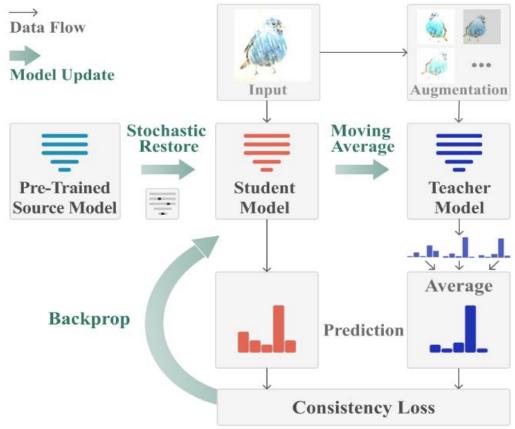
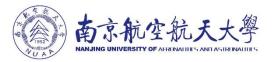


Figure 2. An overview of the proposed continual test-time adaptation (CoTTA) approach. CoTTA adapts from an off-the-shelf source pre-trained network. Error accumulation is mitigated by using a teacher model to provide weight-averaged pseudo-labels and using multiple augmentations to average the predictions. Knowledge from the source data is preserved by stochastically restoring a small number of elements of trainable weights.



Methodology

- 1、Weight-Averaged Pseudo-Labels
- 2. Augmentation-Averaged Pseudo-Labels
- 3、Stochastic Restoration

Experiments



Table 2. Classification error rate (%) for the standard CIFAR10-to-CIFAR10C online continual test-time adaptation task. Tesults are evaluated on WideResNet-28 with the largest corruption severity level 5. * denotes the requirement on additional domain information.

Method	Weight.	Aug.	Stochastic Restore	Gaussian	shot	impulse	defocus	Blass	motion	200m	Mous	frost	g_{oj}	brightness	Contrast	slastic_trans	Pixelate	jpeg	Mean
Source				72.3	65.7	72.9	46.9	54.3	34.8	42.0	25.1	41.3	26.0	9.3	46.7	26.6	58.5	30.3	43.5
BN Stats Adapt				28.1	26.1	36.3	12.8	35.3	14.2	12.1	17.3	17.4	15.3	8.4	12.6	23.8	19.7	27.3	20.4
Pseudo-label				26.7	22.1	32.0	13.8	32.2	15.3	12.7	17.3	17.3	16.5	10.1	13.4	22.4	18.9	25.9	19.8
TENT-online* [61]	1			24.8	23.5	33.0	12.0	31.8	13.7	10.8	15.9	16.2	13.7	7.9	12.1	22.0	17.3	24.2	18.6
TENT-continual [61]				24.8	20.6	28.6	14.4	31.1	16.5	14.1	19.1	18.6	18.6	12.2	20.3	25.7	20.8	24.9	20.7
CoTTA (Ours)	√			27.2	22.8	30.8	12.1	30.1	13.9	11.9	17.2	16.0	14.3	9.4	13.1	19.9	15.4	19.9	18.3
CoTTA (Ours)	1	1		24.5	21.0	26.0	12.3	27.9	13.9	12.0	16.6	15.9	14.7	9.4	13.6	19.8	14.7	18.7	17.4
CoTTA (Ours)	1	1	✓	24.3	21.3	26.6	11.6	27.6	12.2	10.3	14.8	14.1	12.4	7.5	10.6	18.3	13.4	17.3	16.2 (0.1)

Experiments

Table 4. Classification error rate (%) for the standard CIFAR100-to-CIFAR100C online continual test-time adaptation task. All results are evaluated on the ResNeXt-29 architecture with the largest corruption severity level 5.

Time	t															
Method	Gaussian	shot	impulse	defocus	8lass	motion	200m	MOUS	frost	fog	brightness	contrast	elastic_trans	Pixelate	jpeg	Mean
Source	73.0	68.0	39.4	29.3	54.1	30.8	28.8	39.5	45.8	50.3	29.5	55.1	37.2	74.7	41.2	46.4
BN Stats Adapt	42.1	40.7	42.7	27.6	41.9	29.7	27.9	34.9	35.0	41.5	26.5	30.3	35.7	32.9	41.2	35.4
Pseudo-label	38.1	36.1	40.7	33.2	45.9	38.3	36.4	44.0	45.6	52.8	45.2	53.5	60.1	58.1	64.5	46.2
TENT-continual [61]	37.2	35.8	41.7	37.9	51.2	48.3	48.5	58.4	63.7	71.1	70.4	82.3	88.0	88.5	90.4	60.9
CoTTA (Proposed)	40.1	37.7	39.7	26.9	38.0	27.9	26.4	32.8	31.8	40.3	24.7	26.9	32.5	28.3	33.5	32.5

Experiments

Table 5. Semantic segmentation results (mIoU in %) on the Cityscapes-to-ACDC online continual test-time adaptation task. We evaluate the four test conditions continually for ten times to evaluate the long-term adaptation performance. To save space, we only show the continual adaptation results in the first, fourth, seventh, and last round. Full results can be found in the supplementary material. All results are evaluated based on the Segformer-B5 architecture.

Time	t																
Round	1								7				10	All			
Condition	Fog	Night	rain	snow	Mean												
Source	69.1	40.3	59.7	57.8	69.1	40.3	59.7	57.8	69.1	40.3	59.7	57.8	69.1	40.3	59.7	57.8	56.7
BN Stats Adapt	62.3	38.0	54.6	53.0	62.3	38.0	54.6	53.0	62.3	38.0	54.6	53.0	62.3	38.0	54.6	53.0	52.0
TENT-continual [61]	69.0	40.2	60.1	57.3	66.5	36.3	58.7	54.0	64.2	32.8	55.3	50.9	61.8	29.8	51.9	47.8	52.3
CoTTA (Proposed)	70.9	41.2	62.4	59.7	70.9	41.0	62.7	59.7	70.9	41.0	62.8	59.7	70.8	41.0	62.8	59.7	58.6

Thanks