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I Introduction

Calibration:
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A classifier is calibrated if it predicts a posterior class probability of p when the selection of the class is correct p x 100% of the
time. The importance of calibration has been noted for many applications. For example, in medical diagnosis, probabilities can
be used to determine which examples require human inspection, thus avoiding the cost of manually inspecting all images.
However, the process can only be trusted if the DNN provides accurate posterior estimates.

A high-accuracy model may not be well-calibrated
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Model Accuracy:
+ Total samples = 10, correctly predicted samples = §;

» Accuracy = % = 80%.

Calibration Issues:

* Inthe [0.8, 0.9] probability range (Samples 1, 2, 9, 10), the average
predicted probability is p = 0.86, but the actual positive class frequency
is 100%.

* Inthe [0.6, 0.7] probability range (Sample 4), the predicted probability is
p = 0.6, but the actual positive class frequency is 0%.

This indicates that the model, despite being accurate, is poorly calibrated
because its predicted probabilities do not align with actual frequencies.
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I Introduction

Multi-label DNNs can be trained with class probability estimation (CPE) losses that encourage probability calibration, such as
the binary cross-entropy (BCE) loss. However, the multi-label setting is highly imbalanced, due to the sparseness of positives,
as most tags are absent from any given image. In result, asymmetric losses such as such as the focal loss of or the asymmetric
(ASY) loss of tend to produce much higher labeling accuracy than the BCE.

Our preliminary studies reveal that multi-label DNNs trained with existing losses tend to produce poorly-calibrated probabilities.
This is illustrated by the calibration curves in Figure 1, where the calibration of the focal and ASY losses are drastically far from
perfect. We argue that these popular multi-label losses are poorly suited for class-probability estimation because they are not
strictly proper. This is a property that denotes the family of losses uniquely minimized by the true posterior probability.
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Given observation x € A, the goal 1s to estimate the

vector 1(x) = [-r;“}(x), v n{T}(x)] U of class-posterior
probabilities

n0(x) =P (y® =1x) Ve e {1, . T} (1)

where [¥]~1(-) is an inverse link function. This can be any
strictly increasing function [¥]~! : R — A, but is usually

A multi-label DNN typically performs this probability est- the logistic inverse link, or sigmoid activation function

mation in two steps. First, it maps x € A into a real-valued

score vector v(x) = [v'P(x), - ,1J{T}(x}]-r c RY. The o(v) = 1 3)
embedding v : X — R7 is composed by a sequence of lin- 1+ el=v)"

ear and nonlinear operations. Each v(*)(x) is then mapped

into a class-posterior probability estimate with

70(@) =P (39 =1x) = [¥] (0O (x), @



I Preliminary

Given a CPE loss £ : A x {—1,+1} — R that assigns
a cost £(7), +=1) for predicting 7) as the class-posterior prob-
ability of positive class when the true label is y = +1,' the
optimal posterior probability estimator minimizes the risk:

T
Y (’ﬁ{” (x), ‘y“))] } (4)
t=1

where [E denotes expectation. To train a multi-label proba-
bilistic DNN, this is approximated by the empirical risk

R(ﬁ) — Ex,y

N T
~ 1
R@D) =5 > > @)y ©
=1 t=1
on a training dataset D = {(x;,y;)}}, of i.i.d. samples
from X x Y [74].
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I Preliminary

BCE Loss
{ BOE (@) = —log(n), ©
(BYE@) = —log(1 — 7).
ASY Focal Loss
s ocal s~ oy T ~
{ CEPE (@) = —(1— 1) log(), -
eAvrecal@) = —(7)7 log(1 — (7)),
ASY Focal Loss
y e . f—|— e
{Effy(n) =—(1-1)" log(7), .
(A3 (@) = —((—m)y” log(l— (7—m)y)
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R(ﬁ) - EX,y

T

Z ¢ (ﬁ{t} (x) y(t)) (4) Definition 1. (Strict Properness [4, 19, 68]) The pair

t—=1 ? ? of partial losses {{_1,0y1} or {{_1 w,l11 v} is strictly
x] ] 9)

proper if the conditional risk C(n,n) of (11) is uniquely
Since (4) can be rewritten as
A
=Ex |Y C (n(*) (x), ﬁ(t}(x))] (10)

T

S (7960, 40)

t=1

R(n) =Ex IE]_',rlx

minimized by 1) = n for all n € [0, 1].
=1

where C' is the (pointwise) conditional risk

€ (10) 7)) = 14379 + (1 = G0)r (60,




I Method

Theorem 2. Denote the conditional risk of (11) defined by
the ASY loss (*5Y of (8) by C°Y (1. 7). Let

749 (x) = argmin C4%Y (n(x),7(x)) (1)
ne(0,1]

be the minimizer of this risk for any x € X. Then there is a
mapping ¢ such that

n(x) = ¢ (47 (x): 777", m) (13)
where
oy _ h((z —m)4377)
MG T M) = R Ty ) + A —57T)
(14)
h(z:n) = 27 — 27711 — 2) log(1l — z}' (15)

1 — 2z

¢ : A — A is a bijective map if and only if m = (.
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rather than designing a CPE loss {4 (77) explicitly, we con-
sider the separate design of a composite loss 1 ¢ (v) and
an inverse link [¥]~!(v) as below

1 1
g+ 1+ e(—kF@w=b")) )

1
(l + E{+k‘(tl—b_})) !

Cii1e(v) =
(16)

——lo
- 2

E_L-;- [’L‘) =

, (17

]UU 3

where o(-) is the sigmoid function of (3). According to the
Theorem 3 below, the CPE loss composed of (16) and (17)
is strictly proper and thus referred to as the Strictly Proper
Asymmetric (SP2) loss in this work. In practice, following
the practice in the literature [61], we reduce the positive par-
tial loss to the BCE loss by setting (¢, k™, b") = (1,1,0)
and only tune the hyperparmeters (, &k, b of the nega-
tive partial loss. The motivation for these hyperparmeters is
simple and intuitive: 1) £, b~ define an affine transforma-
tion of the logits v(*)(x) that enables control of the rate at
which £_, decaysto O as v — (. ii) (~ is a scale factor that
controls the overall weight of negative examples. Note that
unlike prior losses (6)-(8), SPA does not directly operate on

{ the probability estimate 7)(x), and that the introduction of
| these hyperparameters induces the need for the inverse link

Y| of (17) to achieve the strict properness, rather than simply

|
(B o

4 2 0 2 4 4 0
v v

Figure 2. Example of the SPA losses (left) and the associated inverse link

(right) where (¢, k*, 0T, (,k—,b7) = (1,1,0,5,3,1).

[
.

| using the sigmoid of (3).

Theorem 3. Forany (", (", kT, k~ € Ryy and b,

R, the CPE loss composed of composite loss (16) and in-

verse link function (17) is strictly proper.
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Label Pair Regularizer

A strictly proper CPE loss only guarantees perfect label-probability estimates for asymptotically large
datasets. In practice, for finite datasets, empirical risk minimization does not guarantee the recovery
of true risk minimizer. In this case, probability calibration can usually be improved by adding
regularization terms to the loss function. In this work, we propose a regularizer specifically designed

for multi-label learning. B (x) =P (¥ =+11y® # ), x)
P(y®) =+1,y*") =—1|x)
Under the independence Assumption I, the probability _P(y':”:—l—l.y[ N=—1[x) + P (y =—1, y*) = +1]x)
estimates of each label in {1,... T} are supervised inde- .[f 1| _ ()
pendently, i.e. there is no explicit supervision for the joint =—> i"i'“!g X)L —7 ({3}) —
prediction of multiple classes. This is consistent with the Nt ()1 =7t () + (1 =7 (x))me () (18)

decomposition of the risk of (4) into a sum of ¢ label-
specific risks. However, an example x still provides joint
constraints on the probability estimates of different labels. .y _*'n‘{f]{l . ﬁ{f’})

To see this, consider any x € X and pair (t,t") of labels ™ = =D(1 — 7)) =) (1 — 70
with different values. The probability of y*) =41 is then (L =) + 7t (1 =)

where the last equality follows from the Assumption 1. Let

(19)

be the plugin estimator of Bt The following result shows
Assumption 1. Forany x € & and i # J e {1,---,T},

that the accurate estimation of i?ttr 1S a necessary condition
yl () and ?;{5’} are independent given X, 1.e. Y :'J_L?;U}|x : v

for the accurate estimation of 7(*) and 7(*").
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Label Pair Regularizer

Lemma 1. Foranyt # t', B = B8 is q necessary 2
»r t) _ (1) ~t") _ (1) LPR _ . att’
condition for )\ = n'Y) and n'*") = n{t), L7 (x,y) = T 1) Z L,_ iy [ log B ] :

. o (20)
Since the example x can be seen as a calibration con- Finally, in our proposed training approach, a multi-label

straint for the estimation of 3% in addition to those that DNN is trained by a joint optimization of SPA and LPR:
it already provides for the individual calibration of 7'*)

T
al:l(?} 7, lhl’S suggestsi that mtmducu:ng ca}hbratlon super- - poverill(y vy — ?nym_}p(v(”(x)) FALR (%, y) (21)
vision on 3" can help improve the calibration of n*), n(*), t=1
We leverage this observation by introducing a new Label
Pair Regularizer (LPR) o calibrate the estimate 3%, imple-

mented with the BCE loss

where A 1s the multiplier balancing the two terms.
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Multi-label Image Retrieval

A natural score for image ranking is then the posterior probability

. n P = {person, baseball bat}, N' = {baseball glove}
0 = {9 $1her 5= o) " g
= ][V J] @ -7"x) 22) o
JjEP kEN

where the equality follows from the Assumption 1. This can
be estimated by a probabilistic multi-label networks as

sx) = [0V JJa-7%x). @3

JEP keN

urs

ASY [61]| &

Ours

Figure 4. Qualitative results of multi-label image retrieval. Correct retrieval results are highlighted in green.
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ECA-ResNet50-T ViT-B/32
Accuracy Calibration Accuracy Calibration

Dataset Method | mAP@yt mAP@x1|ACE| MCE||mAP@yt mAP@xt|ACE| MCE |
BCE 722 24 | 82 170 | 701 819 | 60 155
TWL 772 879 | 172 336 | 762 880 | 142 313
Focal 748 859 | 201 349 | 720 838 | 236 362
coco  Focaltd - i L1 203 - : 85 179
ASY 775 882 | 306 460 | 764 877 | 2905 486
ASY + ¢ 770 878 | 150 260 | 762 873 | 162 262
SPA 778 884 | 53 120 | 768 §70 | 48 107
SPA+1PR| 717 886 | 42 93 76.6 881 | 21 53
BCE 85.1 24 | 69 138 | 869 927 | 78 167
TWL 89.1 937 | 108 20 | 901 045 | 145 283
Focal 87.4 933 | 190 358 | 884 936 | 162 317
voe  Focal+4 : i 70 165 - : 93 207
ASY 89.6 946 | 264 477 | 904 947 | 317 528
ASY + ¢ 89.1 943 | 129 247 | 898 942 | 155 330
SPA 895 4.1 54 149 | 900 39 | 61 144
sPa+7PR| 899 943 | 49 110 | 904 948 | 55 127
BCE 749 828 | 115 252 | 767 832 | 86 133
TWL 79.9 855 | 143 200 | 816 876 | 167 323
Focal 785 841 | 201 342 | 808 852 | 188 312
Focal + & : i 93 210 - : 74 165
WIDER-A gy 80.6 860 | 242 352 | 822 878 | 228 363
ASY + ¢ 79.9 854 | 143 275 | 818 872 | 133 207
SPA 80,1 358 | 53 112 | 820 876 | 43 105
SPA+1PR| 803 89 | 35 80 | 827 879 | 28 62
BCE 463 788 | 97 166 | 484 805 | 82 148
TWL 524 843 | 179 260 | 536 854 | 124 268
Focal 180 810 | 240 405 | 50.1 832 | 246 357
Focal + & : i 86 182 - : 96 141
VISPR  \sy 51.6 840 | 288 442 | 530 850 | 277 452
ASY + ¢ 514 837 | 143 237 | 439 528 | 164 290
SPA 524 g5 | 58 120 | 332 853 | 59 102
SPA+1PR| 527 849 | 30 81 53.4 856 | 25 74
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P = {person, baseball bat}, N' = {baseball glove}

ASY [61]

Ours

ASY [61]

Ours




I Experiments

| mAP@xt mAP@y? ACE| MCE|
BCE 722 82.4 8.2 17.0
BCE + LPR 724 82.9 6.5 14.8
Focal 748 85.9 20.1 34.9
Focal + LPR 75.1 86.3 197 364
ASY 775 88.2 306 460
ASY + LPR 77.2 88.1 294  44.7

Table 4. Effect of LER on other CPE losses (COCO, ECA-ResNet50-T).
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