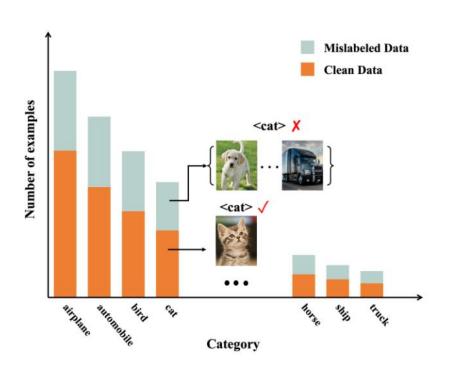


When Noisy Labels Meet Long Tail Dilemmas: A Representation Calibration Method


Manyi Zhang^{1,*} Xuyang Zhao^{2,*} Jun Yao³ Chun Yuan^{1,†} Weiran Huang^{4,†}

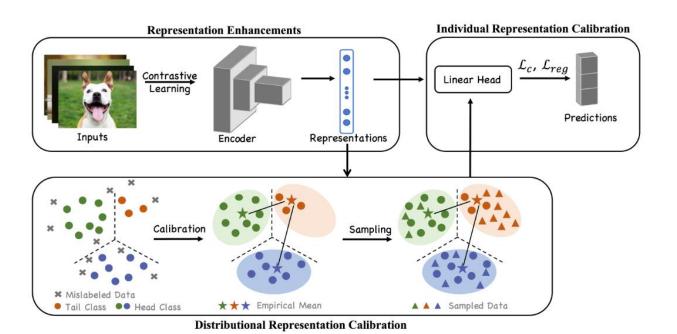
¹SIGS, Tsinghua University ²Peking University ³Huawei Noah's Ark Lab ⁴Qing Yuan Research Institute, SEIEE, Shanghai Jiao Tong University

ICCV 2023

Introduction

Learning with noisy labels:

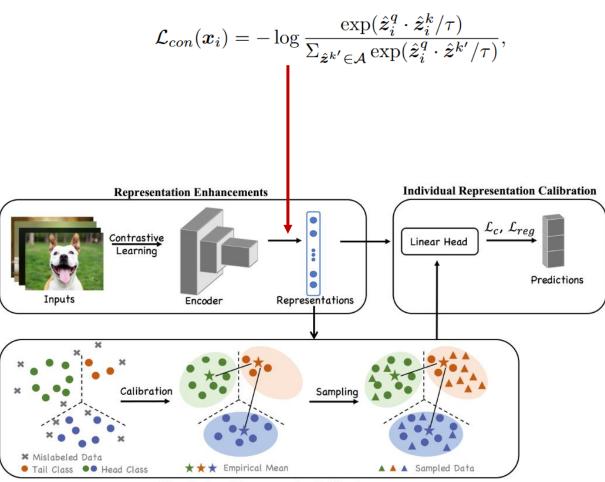
- 1. memorization effect. E.g. Co-teaching
- 2. the noise transition matrix.


Learning with long-tailed data:

1. re-sampling and re-weighting techniques.

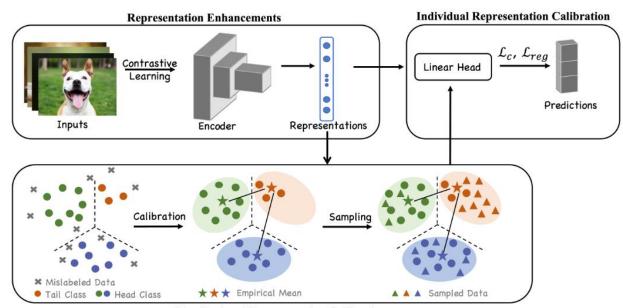
Learning with noisy label on long-tailed data:

- 1. distinguish mislabeled data from the data of tail classes for follow-up procedures. E.g. RoLT
- 2. reduce the side-effects of mislabeled data and long-tailed data in a unified way, relying on strong assumptions. E.g. HAR-DRW



Step1: contrastive learning to achieve representations for all training instances.

Step2: two representation calibration strategies are performed: distributional and individual representation calibrations.


NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS

Distributional Representation Calibration

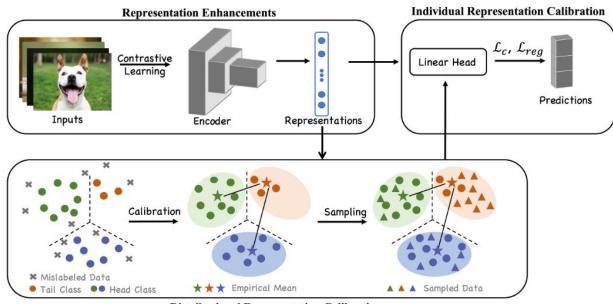
Method/Distributional Representation Calibration

Distributional Representation Calibration

Purpose: recover representation distributions.

Assumption: multivariate Gaussian distribution.

Step1: given the learned representations z. Step2: employ LOF and remove outliers. Step3: estimate the multivariate Gaussian


distribution

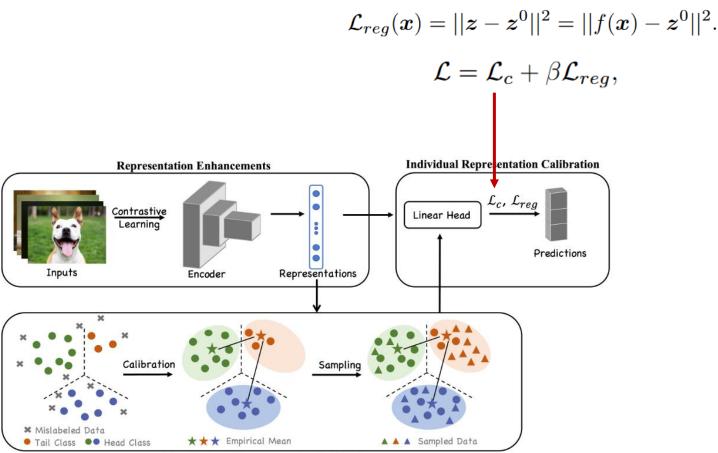
$$\hat{\mu}_k = \sum_{\{i | (\boldsymbol{z}_i, \tilde{y}_i) \in \tilde{\mathcal{S}}_k'\}} \frac{\boldsymbol{z}_i}{|\tilde{\mathcal{S}}_k'|},$$

$$\hat{\boldsymbol{\Sigma}}_k = \sum_{\{i | (\boldsymbol{z}_i, \tilde{y}_i) \in \tilde{\mathcal{S}}_k'\}} \frac{(\boldsymbol{z}_i - \hat{\boldsymbol{\mu}}_k)(\boldsymbol{z}_i - \hat{\boldsymbol{\mu}}_k)^{\top}}{|\tilde{\mathcal{S}}_k'| - 1},$$

NJING UNIVERSITY OF AFRONAUTICS AND ASTRONAUTICS

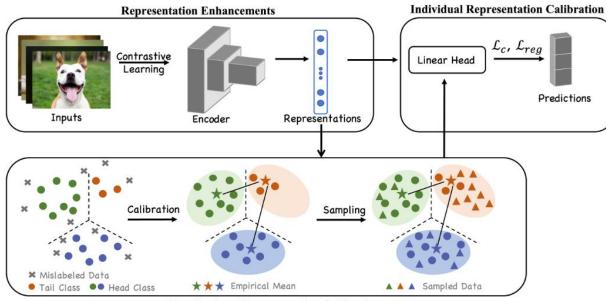
Distributional Representation Calibration

Problem: the data of tail classes may not be enough to estimate.


Motivation: Free Lunch for Few-shot Learning: Distribution Calibration' (similar classes having similar means and covariance on representations)

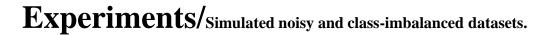
$$\begin{split} \mathcal{B}_k &= \left\{ -||\hat{\boldsymbol{\mu}}_i - \hat{\boldsymbol{\mu}}_k||^2 \mid i \in \mathcal{G}_h \right\}, \\ \mathcal{C}_k^q &= \left\{ i \mid -||\hat{\boldsymbol{\mu}}_i - \hat{\boldsymbol{\mu}}_k||^2 \in \text{topq}(\mathcal{B}_k) \right\}. \end{split}$$

$$\omega_c^k = \frac{n_c ||\hat{\boldsymbol{\mu}}_c - \hat{\boldsymbol{\mu}}_k||^2}{\sum_{j \in \mathcal{C}_k^q} n_j ||\hat{\boldsymbol{\mu}}_j - \hat{\boldsymbol{\mu}}_k||^2},$$
$$\hat{\boldsymbol{\mu}}_k' = \gamma \sum_{c \in \mathcal{C}_k^q} \omega_c^k \hat{\boldsymbol{\mu}}_c + (1 - \gamma) \hat{\boldsymbol{\mu}}_k,$$
$$\hat{\boldsymbol{\Sigma}}_k' = \gamma \sum_{c \in \mathcal{C}_k^q} \omega_c^k \hat{\boldsymbol{\Sigma}}_c + (1 - \gamma) \hat{\boldsymbol{\Sigma}}_k + \alpha \mathbf{1},$$


Purpose: restrict the distance.

Distributional Representation Calibration

Method



Distributional Representation Calibration

Algorithm 1 Algorithm of the proposed method RCAL

Require: the training dataset $\tilde{S} = \{(x_i, \tilde{y}_i)\}_{i=1}^n$, regularization strength β , scalar temperature τ , confidence weight γ , the pretraining epochs T_p , max epochs T_m .

- 1: **for** $t = 1, ..., T_p$ **do**
- 2: **Pre-train** the encoder network f with MoCo [20].
- 3: end for
- 4: Extract deep representations of instances with z = f(x).
- 5: **for** c = 1, ..., K **do**
- 6: **Perform** the LOF algorithm for the *c*-th class and obtain preserved examples \tilde{S}'_c .
- 7: **Build** the multivariate Gaussian distribution $\mathcal{N}(f(\boldsymbol{x})|\hat{\boldsymbol{\mu}}_c, \hat{\boldsymbol{\Sigma}}_c)$ for *c*-th class using $\tilde{\mathcal{S}}_c'$.
- 8: end for
- 9: **Calibrate** the multivariate Gaussian distributions of tail classes with the statistics of head classes.
- 10: **Sample** data points from achieved multivariate Gaussian distributions of all classes.
- 11: for $t = T_p + 1, ..., T_m$ do
- 12: **Add** distance constraints between learned representations and representations brought by contrastive learning.
- 13: **Adopt** the mixup technology to original examples.
- 14: **Train** the encoder f and the linear head h simultaneously on the training dataset and sample data points with the training loss in Eq. (2).
- **15: end for**
- 16: **return** The robust classifier h(f(x)) for testing.

Dataset	Imbalance Ratio			10					100		
CIFAR-10	Noise Rate	0.1	0.2	0.3	0.4	0.5	0.1	0.2	0.3	0.4	0.5
	ERM	80.41	75.61	71.94	70.13	63.25	64.41	62.17	52.94	48.11	38.71
	LDAM	84.59	82.37	77.48	71.41	60.30	71.46	66.26	58.34	46.64	36.66
	LDAM-DRW	85.94	83.73	80.20	74.87	67.93	76.58	72.28	66.68	57.51	43.23
	CRT	80.22	76.15	74.17	70.05	64.15	61.54	59.52	54.05	50.12	36.73
	NCM	82.33	74.73	74.76	68.43	64.82	68.09	66.25	60.91	55.47	42.61
IFA	MiSLAS	87.58	85.21	83.39	76.16	72.46	75.62	71.48	67.90	62.04	54.54
O	Co-teaching	80.30	78.54	68.71	57.10	46.77	55.58	50.29	38.01	30.75	22.85
	CDR	81.68	78.09	73.86	68.12	62.24	60.47	55.34	46.32	42.51	32.44
	Sel-CL+	86.47	85.11	84.41	80.35	77.27	72.31	71.02	65.70	61.37	56.21
	HAR-DRW	84.09	82.43	80.41	77.43	67.39	70.81	67.88	48.59	54.23	42.80
	RoLT	85.68	85.43	83.50	80.92	78.96	73.02	71.20	66.53	57.86	48.98
	RoLT-DRW	86.24	85.49	84.11	81.99	80.05	76.22	74.92	71.08	63.61	55.06
	RCAL (Ours)	88.09	86.46	84.58	83.43	80.80	78.60	75.81	72.76	69.78	65.05
Dataset	Imbalance Ratio			10					100		
	Noise Rate	0.1	0.2	0.3	0.4	0.5	0.1	0.2	0.3	0.4	0.5
	ERM	48.54	43.27	37.43	32.94	26.24	31.81	26.21	21.79	17.91	14.23
	LDAM	I									
		51.77	48.14	43.27	36.66	29.62	34.77	29.70	25.04	19.72	14.19
	LDAM-DRW	51.77 54.01	48.14 50.44	43.27 45.11	36.66 39.35	29.62 32.24	34.77 37.24	29.70 32.27	25.04 27.55	19.72 21.22	14.19 15.21
0		1									
2-100	LDAM-DRW	54.01	50.44	45.11	39.35	32.24	37.24	32.27	27.55	21.22	15.21
FAR-100	LDAM-DRW CRT	54.01 49.13	50.44 42.56	45.11 37.80	39.35 32.18	32.24 25.55	37.24 32.25	32.27 26.31	27.55 21.48	21.22 20.62	15.21 16.01
CIFAR-100	LDAM-DRW CRT NCM	54.01 49.13 50.76	50.44 42.56 45.15	45.11 37.80 41.31	39.35 32.18 35.41	32.24 25.55 29.34	37.24 32.25 34.89	32.27 26.31 29.45	27.55 21.48 24.74	21.22 20.62 21.84	15.21 16.01 16.77
CIFAR-100	LDAM-DRW CRT NCM MiSLAS	54.01 49.13 50.76 57.72	50.44 42.56 45.15 53.67	45.11 37.80 41.31 50.04	39.35 32.18 35.41 46.05	32.24 25.55 29.34 40.63	37.24 32.25 34.89 41.02	32.27 26.31 29.45 37.40	27.55 21.48 24.74 32.84	21.22 20.62 21.84 26.95	15.21 16.01 16.77 21.84
CIFAR-100	LDAM-DRW CRT NCM MiSLAS Co-teaching	54.01 49.13 50.76 57.72 45.61	50.44 42.56 45.15 53.67 41.33	45.11 37.80 41.31 50.04 36.14	39.35 32.18 35.41 46.05 32.08	32.24 25.55 29.34 40.63 25.33	37.24 32.25 34.89 41.02 30.55	32.27 26.31 29.45 37.40 25.67	27.55 21.48 24.74 32.84 22.01	21.22 20.62 21.84 26.95	15.21 16.01 16.77 21.84
CIFAR-100	LDAM-DRW CRT NCM MiSLAS Co-teaching CDR	54.01 49.13 50.76 57.72 45.61 47.02	50.44 42.56 45.15 53.67 41.33 40.64	45.11 37.80 41.31 50.04 36.14 35.37	39.35 32.18 35.41 46.05 32.08 30.93	32.24 25.55 29.34 40.63 25.33 24.91	37.24 32.25 34.89 41.02 30.55 27.20	32.27 26.31 29.45 37.40 25.67 25.46	27.55 21.48 24.74 32.84 22.01 21.98	21.22 20.62 21.84 26.95 16.20 17.33	15.21 16.01 16.77 21.84 13.45 13.64
CIFAR-100	LDAM-DRW CRT NCM MiSLAS Co-teaching CDR Sel-CL+	54.01 49.13 50.76 57.72 45.61 47.02 55.68	50.44 42.56 45.15 53.67 41.33 40.64 53.52	45.11 37.80 41.31 50.04 36.14 35.37 50.92	39.35 32.18 35.41 46.05 32.08 30.93 47.57	32.24 25.55 29.34 40.63 25.33 24.91 44.86	37.24 32.25 34.89 41.02 30.55 27.20 37.45	32.27 26.31 29.45 37.40 25.67 25.46 36.79	27.55 21.48 24.74 32.84 22.01 21.98 35.09	21.22 20.62 21.84 26.95 16.20 17.33 31.96	15.21 16.01 16.77 21.84 13.45 13.64 28.59
CIFAR-100	LDAM-DRW CRT NCM MiSLAS Co-teaching CDR Sel-CL+ HAR-DRW	54.01 49.13 50.76 57.72 45.61 47.02 55.68	50.44 42.56 45.15 53.67 41.33 40.64 53.52 46.24	45.11 37.80 41.31 50.04 36.14 35.37 50.92 41.23	39.35 32.18 35.41 46.05 32.08 30.93 47.57 37.35	32.24 25.55 29.34 40.63 25.33 24.91 44.86 31.30	37.24 32.25 34.89 41.02 30.55 27.20 37.45	32.27 26.31 29.45 37.40 25.67 25.46 36.79 26.29	27.55 21.48 24.74 32.84 22.01 21.98 35.09 22.57	21.22 20.62 21.84 26.95 16.20 17.33 31.96	15.21 16.01 16.77 21.84 13.45 13.64 28.59

Methods for long-tailed data

Methods for noisy labels

Methods for both

Table 2: Top1 and Top5 test accuracy on Webvision and ImageNet validation sets. Partial numerical results come from [5, 61]. The best results are in **bold**.

Train	WebVision-50						
Test	WebV	/ision	ILSVRC12				
Method	Top1 (%)	Top5 (%)	Top1 (%)	Top5 (%)			
ERM	62.5	80.8	58.5	81.8			
Co-teaching [18]	63.58	85.20	61.48	84.70			
INCV [7]	65.24	5.24 85.34		84.98			
MentorNet [25]	63.00	81.40	57.80	79.92			
CDR [63]	-	-	61.85	-			
HAR [5]	75.5	90.7	70.3	90.0			
RoLT+ [61]	77.64	92.44	74.64	92.48			
RCAL (Ours)	76.24	92.83	73.60	93.16			
RCAL+ (Ours)	79.56	93.36	76.32	93.68			

Table 3: Test accuracy on the Clothing1M test dataset. Partial numerical results come from [78]. The best results are in **bold**.

Method	Top1 (%)	Method	Top1 (%)
ERM	68.94	Co-teaching [18]	67.94
MentorNet [25]	67.25	CDR [63]	68.25
Forward [48]	69.84	D2L [45]	69.74
Joint [53]	72.23	GCE [79]	69.75
Pencil [73]	73.49	LRT [82]	71.74
SL [58]	71.02	MLNT [33]	73.47
PLC [78]	74.02	DivideMix [32]	74.76
ELR+ [42]	74.81	RCAL+ (Ours)	74.97

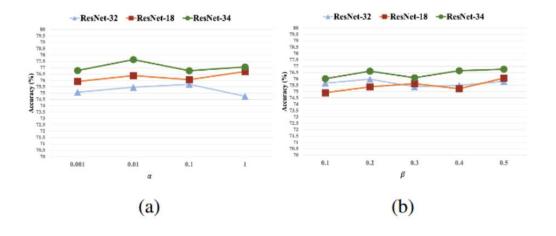


Table 7: Ablation study results of test accuracy (%) on simulated CIFAR-10 and CIFAR-100. We report the mean. The best results are in **bold**. In the following, "CL" means unsupervised contrastive learning. "DC" means distributional calibration. "REG" means individual calibration by restricting the distance between subsequently learned representations and the representations brought by unsupervised contrastive learning.

Dataset	CIFAR-10				CIFAR-100			
Imbalance Ratio	10		100		10		100	
Noise Rate	0.2	0.4	0.2	0.4	0.2	0.4	0.2	0.4
RCAL	86.46	83.43	75.81	69.78	54.85	48.91	39.85	33.36
RCAL w/o Mixup	84.08	79.27	72.47	64.83	51.22	45.53	36.78	30.85
RCAL w/o Mixup, REG	83.23	78.12	67.49	58.27	48.74	42.15	34 31	27.14
RCAL w/o Mixup, REG, DC	80.40	74.37	64.02	54.61	47.01	40.85	32.27	25.42
RCAL w/o Mixup, REG, DC, CL	75.61	70.13	62.17	48.11	43.27	32.94	26.21	17.91

NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS

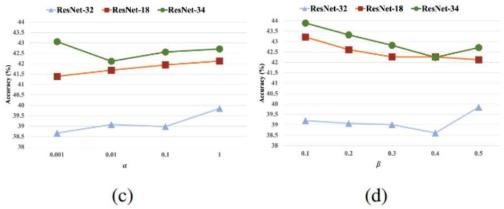



Table 6: Test accuracy (%) of many/medium/few classes on CIFAR-10, where the noise rate and imbalance ratio are 0.5 and 10.

	Method	Many	Medium	Few	Overall	
	ERM	82.71	55.31	57.22	63.25	
	MiSLAS	67.16	69.52	81.66	72.46	
2021	RCAL (Ours)	84.10	84.13	73.98	80.80	

Thank you