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Introduction

Federated learning :

Federated learning enables multiple parties to collaboratively train a machine learning model without 
communicating their local data. A key challenge in federated learning is to handle the heterogeneity of 
local data distribution across parties.

Generic Federated Learning (G-FL) aims to create a single global model that performs well across all 
clients.

Personalized Federated Learning (P-FL) acknowledges the heterogeneity among clients and focuses on 
tailoring models to individual clients.



Introduction

Data heterogeneity:

A key challenge in federated learning is the heterogeneity of data distribution on different parties. The 
data can be non-identically distributed among the parties in many real-world applications, which can 
degrade the performance of federated learning. Non-IID data includes forms as follow:

Feature distribution skew

Label distribution skew

Same label but different features

Same features but different label

Distribution skew

When each party updates its local model, its local objective may be far from the global objective. Thus, 
the averaged global model is away from the global optima. 



Introduction

Contrastive Learning:

The key idea of contrastive learning is to reduce the distance be tween the representations of different 
augmented views of the same image (i.e., positive pairs), and increase the distance between the 
representations of augmented views of different images (i.e., negative pairs).

A typical contrastive learning framework is SimCLR. Given an image x, SimCLR first creates two correlated 
views of this image using different data augmentation operators. A base encoder and a projection head 
are trained to extract the representation vectors and map the representations to a latent space. 

NT-Xent Loss



Motivation

MOON is based on an intuitive idea: the model trained on the whole dataset is able to extract a better 
feature representation than the model trained on a skewed subset. Visualized the hidden vectors :

Model-Contrastive Federated Learning:



Method

MOON : Model-Contrastive Federated Learning

MOON aims to decrease the distance between the representation learned by the local model and the 
representation learned by the global model, and increase the distance between the representation 
learned by the local model and the representation learned by the previous local model.

Network Architecture

The network has three components: a base 
encoder, a projection head, and an output layer.

We use Fw(·) to denote the whole network and 
Rw(·) to denote the network before the output 
layer.



Method

Local Objective

Local loss consists two parts. The first part is a typical loss term (e.g., cross-entropy loss) in supervised 
learning denoted as          . The second part is our proposed model-contrastive loss term denoted 
as          .

For every input x, we extract the representation of x from the global model      

Similar to NT-Xent loss, we define model-contrastive loss as:

τ denotes a temperature parameter



Method

The loss of an input (x, y) is computed by

An notable thing is that considering an ideal case where the local model is good enough and learns 
(almost) the same representation as the global model (i.e., Zglob = Zprev), the model-contrastive loss will 
be a constant (i.e., −log 1/2). Thus, MOON will produce the same result as FedAvg, since there is no 
heterogeneity issue. In this sense, our approach is robust regardless of different amount of drifts.



Method



Experiment

The top-1 accuracy of MOON and the other baselines on test datasets

Accuracy Comparison



Experiment
Communication Efficiency

The number of rounds of different approaches to achieve the same 
accuracy as running FedAvg for 100 rounds



Experiment

Number of Local Epochs

We study the effect of number of local epochs on the accuracy of final model. 
When the number of local epochs is 1, the local update is very small. Thus, the training is slow and the 
accuracy is relatively low given the same number of communication rounds.
When the numberof local epochs becomes too large, the accuracy of all approaches drops, which is 
due to the drift of local updates, i.e., the local optima are not consistent with the global optima.



Experiment

Scalability

To show the scalability of MOON, we try a larger number of parties on CIFAR-100. Specifically, we try 
two settings: 
(1) We partition the dataset into 50 parties and all parties participate in federated learning in each 

round. 
(2) We partition the dataset into 100 parties and randomly sample 20 parties to participate in 

federated learning in each round. 



Experiment

Loss Function

To maximize the agreement between the representation learned by the global model and the 
representation learned by the local model, our model-contrastive loss ℓcon is proposed inspired by 
NT-Xent loss. Another intuitive option is to use ℓ2 regularization, and the local loss is

We can  observe that simply using ℓ2 norm even cannot improve the  accuracy compared with 
FedAvg on CIFAR-10. While using ℓ2 norm can improve the accuracy on CIFAR-100 and Tiny-
Imagenet, the accuracy is still lower than MOON. 



Conclusion

To improve the performance of federated deep learning models on non-IID datasets, we propose 

model-contrastive learning (MOON), a simple and effective approach for federated learning. 

MOON introduces a new learning concept, i.e., contrastive learning in model-level. Our extensive 

experiments show that MOON achieves significant improvement over state-of-the-art approaches 

on various image classification tasks. As MOON does not require the inputs to be images, it 

potentially can be applied to non-vision problems.



Thanks
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