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Weighted Sum Targets-t4
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Table 1: Error rates (Top-1, %) on CIFAR-10. OKDDip: network-based (1st column) and branch-based (2nd column).

Network Baseline Ind DML CL-ILR ONE OKDDip
DenseNet-40-12 6.87+0.02 697+0.03 650+0.02 7.02+008 6.85+0.15]|594+0.05 6.48+0.12
ResNet-32 6.34 003 599+0.15 6.18+0.05 6.060.07 5.94+£0.06 | 5.62+0.07 5.58+£0.08
VGG-16 6.12+0.15 6.03£0.01 594+£004 622£0.10 6.16£0.08 | 5.88 £+ 0.04 5.87 £ 0.03
ResNet-110 546 4+0.02 495+0.02 568+003 488+0.12 5.02+0.04 |454+0.07 4.56+0.11
WRN-20-8 527+£0.06 535+0.02 5.04+008 5.12+0.16 529+0.02 | 4.84+0.07 5.06%0.04

Table 2: Error rates (Top-1, %) on CIFAR-100. OKDDip: network-based (1st column) and branch-based (2nd column).

Network Baseline Ind DML CL-ILR ONE OKDDip
DenseNet-40-12 2897 +£0.23 29.20+0.09 26.64 +0.17 28.61 £0.12 28.76 £0.18 | 26.10 = 0.03 28.34 + 0.02
ResNet-32 28.76 £ 0.08 27.84 +0.05 2647+0.26 27.444+0.05 26.50+0.13 | 25.40+0.08 25.63+0.14
VGG-16 26.194+0.12 2581 +0.18 25.33+0.03 25.62+0.11 25.63+0.03 | 2488+ 0.06 25.15+0.19
ResNet-110 24.12 1+ 020 23.54+t0.15 2250+0.11 21.56+0.09 21.67+0.12 | 21.09+0.17 21.14+£0.14
WRN-20-8 2250+ 044 21.85+0.12 20.21+0.11 2044 £0.13 21.19+0.12 | 19.63 = 0.07 20.06 £ 0.05
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Table 3: Error rates (Top-1, %) for ResNet-34 on ImageNet-
2012. OKDDip: network-based (1st column) and branch-
based (2nd column).

Baseline DML CL-ILR ONE | OKDDip
26.76 26.03 26.06 25.92 | 2542 25.60

Table 4: Error rates (Top-1, %) of ensemble predictions with
branch-based student models on CIFAR-100.

Network CL-ILR ONE OKDDip | Ind

VGG-16 25.56  25.54 24.95 25.62
ResNet-32 27.01 2490 23.45 23.74
ResNet-110  20.19  20.14 19.54 20.18
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(1) w/o SA (random). A random attention matrix with normalization is used to put randomly generated belief among
peers.

(2) w/o SA (entropy). we completely remove Ldis] from objective function and let the peers only learn from Lgt with an
entropy term.

(3) w/o SA (mean). Simple average is applied to aggregate the predictions of peers in the first-level distillation.
(4) w/o SA (asymmetry). Another special case that ablates asymmetry of SA by forcing WE and WL as identity matrices.

(5) w/o two-level. The second-level distillation is ablated by removing the group leader from training and inference with
a randomly chosen student model.

Table 5: Ablation study: Error rates (Top-1, %) for ResNet-32 on CIFAR-100

w/o SA (random) w/o SA (entropy) w/o SA (mean) w/o SA (asymmetry) w/o two-level OKDDip
28.24 1+ 0.16 26.71 + 0.19 26.35 +0.14 26.05 +0.17 27.79+0.14 25.63 + 0.14
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Figure 3: Impact of group size with branch-based ResNet-32
on CIFAR-100.
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The outputs of the student models may
conflict with each other.

The training cost is high.

gpae Teacher /’"I Student1

x ; |

T Student S~ Student2 u‘z
(a) Baseline (b) DML

X1 Student1

/- Unsharel

X +— Share -/\—* Gate

\-Unsharez : X2 —  Student2

(c) ONE (d) KDCL

Lack of flexibility due to shared
underlying network.
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KDCL-Naive

Find the student output with the minimum loss compared to the one-hot label:

zZ; = Z,, k = argmin Log(2z;,y),

1

KDCL-Linear

The soft labels obtained using the above method may be of poor quality. Therefore, consider performing a
weighted sum of all student outputs to minimize the loss with respect to the hard labels:

TrL
1-1'1];{211 Lep(alZ,y), subject tozm =105 2 0
(IE m
i=1
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KDCL-MinLogit

KDCL-Linear introduces an optimization problem during training, and we hope the
network ensemble is efficient.

The differences between logit values determine the probability distribution from the
softmax function. Thus, the output probabilities are represented as:

p = softmax(z) = softmax(z — z°)

For all student networks, the c-th element of output is set to 0. When the other elements in the logit
decrease, the CE loss with the one-hot label will be reduced.

A concise way to generate teacher logits is to select the minimum element in each row of the matrix.
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KDCL-General

To assess the generalization quality, it's necessary to have a validation set as a metric.
Therefore, a portion of the training set is first selected to serve as the validation set.

The objective is to weight the logits of the student network on validation set, with the

requirement that w; € [0,1] (¢ = 1,2,....,m) and >/, w; = 1 , such that:

E(x) = (f(x) —t)

/

! ; m 2 \
FE = / g Tﬂ-z'fi(x) — IU(X)dK Ci; = /( i(x) —t) (f;(x) —t) p(x)dx ol
=1 e
1o R = T
=22 wiwiCi. ~ () = () = 1 X5 G
=1 j=1 k=1 /
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Method ResNet-50 | ResNet-18 | Gain
Vanilla 76.8 Th2 0
KDJ[10] 76.8 721 0.9
DML 3] 75.8 717 -0.5
ONEJ[ 5] - 72.2 -
CLNN[22] - 72.4 -
KDCL-Naive T 72.9 2.4
KDCL-Linear 77.8 73.1 2.9
KDCL-MinLogit 77.8 73.1 2.9
KDCL-General | 72.0 1.1

Table 2: Top-1 accuracy rate (%) on ImageNet. All the models
are reimplemented with our training procedure for a fair compar-
ison. Gain indicates the sum of the component student network
improvement. ONE and CLNN are incompatible with different
network structures. Therefore, only the accuracy of ResNet-18 is
compared.
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Method Top-1 | Top-5 | Params

Vanilla 71.2 | 900 | 11.7M

ONE[ 15] 72.2 | 90.6 | 29.5M

KDCL MobileNetV2x1.2 | 72.9 | 90.8 | 16.4M
CLNN[22] 724 | 90.7 | 40.5M
KDCL ResNet-50 73.1 | 91.2 | 37.2M

Table 3: Top-1 and Top-5 accuracy rate (%) on ImageNet. The
backbone is ResNet-18. ONE is trained with 3 branches (Res4
block) and CLNN has a hierarchical design with 4 heads. For
KDCL, ResNet-18 is trained with a peer network.
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Model 1 Top-1 | Model 2 Top-1 | Method

MBV?2 72.0 | MBV2x0.5 64.8 Vanilla
MBV?2 73.1 | MBV2x0.5 66.2 Linear
MBV?2 73.1 | MBV2x0.5 66.3 | MinLogit

ResNet-18  71.2 | MBV2x0.5 64.8 | Vanilla
ResNet-18  71.8 | MBV2x0.5*% 65.6 | Linear
ResNet-18  71.9 | MBV2x0.5*% 65.6 | MinLogit

ResNet-18 71.2 | MBV2 72.0 Vanilla
ResNet-18 72.1 | MBV2* 72.8 Linear
ResNet-18 72.2 | MBV2* 72.8 | MinLogit

ResNet-50 76.8 | MBV2x0.5 64.8 Vanilla
ResNet-50 77.5 | MBV2x0.5* 67.1 Linear
ResNet-50 77.7 | MBV2x0.5* 66.8 | MinLogit

ResNet-50* 76.5 | ResNet-18* 71.2 Vanilla
ResNet-50* 76.8 | ResNet-18* 72.0 Linear
ResNet-50*% 77.0 | ResNet-18* 72.1 | MinLogit

Table 4: The comparative result of different sub-network on Ima-
geNet validation set. MBV?2 is the abbreviation of MobileNetV2.
MBV2x0.5 represents the width multiplier is 0.5. ResNet-50* and
ResNet-18%* are trained for 100 epochs. MBV2* and MBV2x0.5*

are trained for 200 epochs.
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Networkk | I | 2 | 3 | 4 | 5
Top-1(%) | 70.1 | 71.3 | 71.61 | 71.75 | 71.87

Table 5: KDCL benefits from ensembling more sub-networks. All
the networks are ResNet-18 to prevent the impact of network per-
formance differences.

Model | Res-50 | Res-18 | MBV2 | MBV2x0.5 | Gain

Vanilla| 76.8 71.2 T2.0 64.8 0
KDCL | 78.2 73.9 74.0 66.9 7.8

Table 6: Top-1 accuracy rate (%) on ImageNet. ResNet-50 is sig-
nificantly improved with the knowledge from three compact mod-
els.



I Experiment

Methiod ICL | ResNet-32 | WRN-16-2 | Gain
G Acc % Acc %

Vanilla 69.9 1722 0
2distll 1 [10] 743 122 34
1 distill 2 [10] 69.9 74.5 2.3

DML [32] 733 74.8 6.0
ONE [15] 73.6 - -
CLNN [22 73.4 - -
KDCL-Naive 73.7 74.8 6.4
KDCL-Naive v 73.8 74.9 6.6
KDCL-Linear 73.4 74.6 59
KDCL-Linear N 73.6 749 6.4
KDCL-MinLogit 73.0 74.1 5.0
KDCL-MinLogit | +/ 13D 74.6 6.0
KDCL-General 74.0 75.2 g |
KDCL-General \/ 4.3 76.5 il 4

Table 7: The comparative and ablative result of our generate dis-
tillation method on CIFAR-100 dataset. ICL is invariant collabo-
rative learning. We only report the accuracy of ResNet-32 as ONE

and CLNN are incompatible with WRN-16-2.
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