

# Out-of-Distribution Detection in Long-Tailed Recognition with Calibrated Outlier Class Learning

#### Wenjun Miao<sup>1</sup>, Guansong Pang<sup>2\*</sup>, Xiao Bai<sup>1,3</sup>, Tianqi Li<sup>1</sup>, Jin Zheng<sup>1, 4\*</sup>

 <sup>1</sup>School of Computer Science and Engineering, Beihang University
 <sup>2</sup>School of Computing and Information Systems, Singapore Management University
 <sup>3</sup>State Key Laboratory of Software Development Environment, Jiangxi Research Institute, Beihang University
 <sup>4</sup>State Key Laboratory of Virtual Reality Technology and Systems, Beihang University {miaowenjun, jinzheng, baixiao, tianqili}@buaa.edu.cn, gspang@smu.edu.sg

AAAI 2024



DNNs often have high confidence predictions that classify OOD samples from unknown classes as one of the known classes.

This issue is further amplified when long-tailed distribution

The models often misclassify OOD samples into head classes with high confidence.

The tail samples often have a much higher OOD score than the head samples



(a) Feature representations of CIFAR100-LT test data





#### **OOD Detection**

- 1. The post hoc methods: devising new OOD scoring functions in the inference phrase.
- 2. Utilizing auxiliary data during training: OE ([ICLR2018]Deep Anomaly Detection With Outlier Exposure)

$$\mathcal{L}_{OE} = \mathbb{E}_{x, y \sim \mathcal{D}_{in}} [\ell(f(x), y] + \gamma \mathbb{E}_{x \sim \mathcal{D}_{out}} [\ell(f(x), u],$$

Focused on balanced ID training data.

#### **OOD Detection in LTR**

- 1. Utilizing unlabeled auxiliary OOD data to enhance the robustness of OOD detection and improve ID classification accuracy.
- 2. Fitting the prediction probability of OOD data to a long-tailed distribution. It is difficult to obtain such an accurate prior distribution of OOD data in LTR.

We instead utilize the outlier class learning to eliminate the need for such a prior.

$$\mathcal{L}_{OCL} = \mathbb{E}_{x, y \sim \mathcal{D}_{in}} [\ell(f(x), y] + \gamma \mathbb{E}_{x \sim \mathcal{D}_{out}} [\ell(f(x), \tilde{y}], \tilde{y}]]$$



$$\mathcal{L}_{OE} = \mathbb{E}_{x, y \sim \mathcal{D}_{in}} [\ell(f(x), y] + \gamma \mathbb{E}_{x \sim \mathcal{D}_{out}} [\ell(f(x), u], (1)]$$
$$\mathcal{L}_{OCL} = \mathbb{E}_{x, y \sim \mathcal{D}_{in}} [\ell(f(x), y] + \gamma \mathbb{E}_{x \sim \mathcal{D}_{out}} [\ell(f(x), \tilde{y}], (2)]$$

OE achieves promising performance in general OOD detection scenarios, but works less effectively when applied to LTR settings. It is mainly because the uniform prediction probability prior in Eq.1 does not hold in LTR.

- OOD -> head classes
- Tail classes -> OOD

### Method



![](_page_4_Picture_2.jpeg)

NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS

![](_page_4_Figure_4.jpeg)

![](_page_5_Picture_1.jpeg)

**Problem:** The tail classes samples tend to exhibit high OOD scores during LTR inference.

**Previous work:** attempts to utilize diverse augmentations to push tail samples away from OOD samples, but it often learns non-discriminative representations between OOD samples and tail samples due to the limited size of tail classes.

**Method:** a learnable prototype of one tail class as positive sample to pull tail samples closer to their prototype.

$$\mathcal{L}_{t} = \mathbb{E}_{x \sim \mathcal{D}_{tail}}[\mathcal{L}_{t}(x, \mathcal{M})], \qquad \mathcal{M} \in \mathbb{R}^{N \times D}$$
$$\mathcal{L}_{t}(x, \mathcal{M}) = \frac{1}{|\mathcal{B}|} \sum_{x \in \mathcal{B}} \log \frac{exp(z(x)m_{x}^{\intercal}/t)}{\sum_{m \in \mathcal{M}} exp(z(x)m^{\intercal}/t) + P(x)}, \quad P(x) = \sum_{\hat{x} \in \mathcal{O}} exp(z(x)z(\hat{x})^{\intercal}/t)$$

![](_page_5_Figure_6.jpeg)

![](_page_6_Picture_1.jpeg)

**Problem:** Due to the overwhelming presence of head class samples, LTR models demonstrate a strong bias towards head classes when performing OOD detection.

**Method:** the OOD samples as <u>anchor</u>, with randomly sampled head samples as <u>negative samples</u> and the OOD samples that are distant from the anchors in the feature space as positive samples.

$$\mathcal{L}_h = \mathbb{E}_{x \sim \mathcal{D}_{out}}[\mathcal{L}_h(x)],$$

$$\mathcal{L}_{h}(x) = \frac{1}{|\mathcal{B}|} \sum_{x \in \mathcal{B}} max(0, ||z(x) - z(x^{p})||_{2}^{2})$$
$$-||z(x) - z(x^{n})||_{2}^{2} + margin),$$

$$\mathcal{L}_{total} = \mathcal{L}_{OCL} + \alpha \mathcal{L}_t + \beta \mathcal{L}_h$$
  
=  $\mathbb{E}_{x,y\sim\mathcal{D}_{in}}[\ell(f(x),y] + \gamma \mathbb{E}_{x\sim\mathcal{D}_{out}}[\ell(f(x),\tilde{y}] + \alpha \mathbb{E}_{x\sim\mathcal{D}_{tail}}[\mathcal{L}_t(x,\mathcal{M})] + \beta \mathbb{E}_{x\sim\mathcal{D}_{out}}[\mathcal{L}_h(x)],$ 

![](_page_6_Figure_7.jpeg)

![](_page_7_Picture_1.jpeg)

**Problem:** due to the inherent class imbalance in the training data, the LTR model often tends to have a higher confidence on the prediction of head samples than both the tail samples and the OOD samples.

$$P(y=i|x) = rac{e^{f_i(x) - au \cdot \log n_i}}{\sum_{j=1}^{k+1} e^{f_j(x) - au \cdot \log n_j}}, \quad n_i = rac{N_i}{N_1 + N_2 + \dots + N_k},$$

We do not have genuine OOD samples during training and OOD samples should be as important as ID classification

$$n_{k+1} = 1$$

decrease the probability of head classes and increase that of tail classes, while taking into account the influence of OOD samples on the prediction.

![](_page_7_Picture_7.jpeg)

(c) Outlier-class-aware logit calibration

#### Experiment

![](_page_8_Picture_1.jpeg)

| 的 | 5 | 机 | ¥ | 炕 | 大 | 大 | 子<br>了 |
|---|---|---|---|---|---|---|--------|
|   |   |   |   |   |   |   |        |

例

- A: 1 A) .

OOD 1

NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS

| OOD           | Method     | AUC↑    | AP-in↑    | AP-out↑   | FPR↓      |
|---------------|------------|---------|-----------|-----------|-----------|
|               | OE         | 92.30   | 96.01     | 82.57     | 48.65     |
| Texture       | OCL        | 93.71   | 95.95     | 91.07     | 27.22     |
|               | COCL       | 96.81   | 98.21     | 93.86     | 14.65     |
|               | OE         | 94.86   | 91.59     | 97.00     | 29.11     |
| SVHN          | OCL        | 95.14   | 90.88     | 97.73     | 25.47     |
|               | COCL       | 96.98   | 93.25     | 98.61     | 12.59     |
|               | OE         | 83.32   | 84.06     | 80.83     | 65.82     |
| CIFAR100      | OCL        | 82.04   | 82.52     | 81.92     | 63.35     |
|               | COCL       | 86.63   | 86.66     | 86.28     | 52.21     |
| Tiny          | OE         | 86.35   | 89.88     | 79.30     | 64.50     |
| ImageNet      | OCL        | 85.90   | 88.98     | 82.17     | 57.46     |
| Intagervet    | COCL       | 90.43   | 92.52     | 87.03     | 46.12     |
|               | OE         | 91.57   | 93.06     | 88.37     | 53.99     |
| LSUN          | OCL        | 92.75   | 92.69     | 93.10     | 30.95     |
|               | COCL       | 94.85   | 95.43     | 93.98     | 27.48     |
|               | OE         | 90.20   | 82.09     | 95.24     | 57.06     |
| Place365      | OCL        | 89.91   | 77.91     | 96.28     | 42.33     |
|               | COCL       | 93.97   | 87.36     | 97.56     | 32.25     |
| (a) Compariso | on of COCI | with OE | and OCL o | n six OOE | datasets. |
| Method        | AUC↑       | AP-in↑  | AP-out↑   | FPR↓      | ACC↑      |
| MSP           | 74.33      | 73.96   | 72.14     | 85.33     | 72.17     |
| OE            | 89.76      | 89.45   | 87.22     | 53.19     | 73.59     |
| EnergyOE      | 91.92      | 91.03   | 91.97     | 33.80     | 74.57     |
| OCL           | 89.91      | 88.15   | 90.38     | 41.13     | 74.48     |
| PASCL         | 90.99      | 90.56   | 89.24     | 42.90     | 77.08     |
| OS            | 91.94      | 91.08   | 89.35     | 36.92     | 75.78     |
| Class Prior   | 92.08      | 91.17   | 90.86     | 34.42     | 74.33     |
| BERL          | 92.56      | 91.41   | 91.94     | 32.83     | 81.37     |
| COCL          | 93.28      | 92.24   | 92.89     | 30.88     | 81.56     |
|               |            |         |           |           |           |

(b) Comparison results with different competing methods. The results are averaged over the six OOD test datasets in (a).

Table 2: Comparison results on CIFAR10-LT.

| OOD         | Method     | AUCT       | AP-in↑    | AP-out↑   | FPK↓      |
|-------------|------------|------------|-----------|-----------|-----------|
|             | OE         | 76.01      | 85.28     | 57.47     | 87.45     |
| Texture     | OCL        | 75.92      | 82.99     | 66.48     | 70.01     |
|             | COCL       | 81.99      | 88.05     | 74.38     | 59.79     |
|             | OE         | 81.82      | 73.25     | 89.10     | 80.98     |
| SVHN        | OCL        | 78.64      | 69.21     | 86.26     | 86.38     |
|             | COCL       | 89.20      | 81.57     | 94.21     | 54.46     |
|             | OE         | 62.60      | 66.16     | 57.77     | 93.53     |
| CIFAR10     | OCL        | 60.29      | 63.21     | 55.71     | 94.22     |
|             | COCL       | 62.05      | 66.14     | 56.82     | 93.88     |
| Tiny        | OE         | 68.22      | 79.36     | 51.82     | 88.54     |
| Imy         | OCL        | 69.56      | 79.97     | 54.47     | 85.91     |
| Imagemet    | COCL       | 71.87      | 81.89     | 57.12     | 83.93     |
|             | OE         | 76.81      | 85.33     | 60.94     | 83.79     |
| LSUN        | OCL        | 79.14      | 86.56     | 66.58     | 75.07     |
|             | COCL       | 84.10      | 89.89     | 69.80     | 74.67     |
|             | OE         | 75.68      | 60.99     | 86.51     | 83.55     |
| Place365    | OCL        | 77.81      | 62.80     | 88.39     | 79.97     |
|             | COCL       | 80.30      | 68.65     | 89.16     | 77.83     |
| (a) Compari | son of COO | CL to OE a | and OCL o | n six OOD | datasets. |
| Method      | AUC↑       | AP-in↑     | AP-out↑   | FPR↓      | ACC↑      |
| MSP         | 63.93      | 64.71      | 60.76     | 89.71     | 40.51     |
| OE          | 73.52      | 75.06      | 67.27     | 86.30     | 39.42     |
| EnergyOE    | 76.40      | 77.32      | 72.24     | 76.33     | 41.32     |

|             |       |       |       | 00.00 |       |
|-------------|-------|-------|-------|-------|-------|
| EnergyOE    | 76.40 | 77.32 | 72.24 | 76.33 | 41.32 |
| OCL         | 73.56 | 74.12 | 69.65 | 81.93 | 41.54 |
| PASCL       | 73.32 | 74.84 | 67.18 | 79.38 | 43.10 |
| OS          | 74.37 | 75.80 | 70.42 | 78.18 | 40.87 |
| Class Prior | 76.03 | 77.31 | 72.26 | 76.43 | 40.77 |
| BERL        | 77.75 | 78.61 | 73.10 | 74.86 | 45.88 |
| COCL        | 78.25 | 79.37 | 73.58 | 74.09 | 46.41 |

(b) Comparison results with different competing methods. The results are averaged over the six OOD test datasets in (a).

Table 3: Comparison results on CIFAR100-LT.

the difficulty of learning the outlier class given the similarity between these two datasets

| Method      | AUC↑  | AP-in↑ | AP-out↑ | FPR↓  | ACC↑  |
|-------------|-------|--------|---------|-------|-------|
| MSP         | 55.78 | 35.60  | 74.18   | 94.01 | 45.36 |
| OE          | 68.33 | 43.87  | 82.54   | 90.98 | 44.00 |
| EnergyOE    | 69.43 | 45.12  | 84.75   | 76.89 | 44.42 |
| OCL         | 68.67 | 43.11  | 84.15   | 77.46 | 44.77 |
| PASCL       | 68.00 | 43.32  | 82.69   | 82.28 | 47.29 |
| OS          | 69.23 | 44.21  | 84.12   | 79.37 | 45.73 |
| Class Prior | 70.43 | 45.26  | 84.82   | 77.63 | 46.83 |
| BERL        | 71.16 | 45.97  | 85.63   | 76.98 | 50.42 |
| COCL        | 71.85 | 46.76  | 86.21   | 75.60 | 51.11 |

Table 4: Comparison results on ImageNet-LT with ImageNet-1k-OOD as OOD test dataset.

| Metric  | C     | IFAR10- | LT    | C     | FAR100 | -LT   |
|---------|-------|---------|-------|-------|--------|-------|
|         | OE    | OCL     | COCL  | OE    | OCL    | COCL  |
| AUC↑    | 82.60 | 84.84   | 91.91 | 64.08 | 66.11  | 74.85 |
| AP-in↑  | 60.47 | 61.56   | 76.98 | 34.07 | 34.97  | 47.76 |
| AP-out↑ | 92.28 | 94.75   | 97.15 | 83.19 | 85.74  | 87.59 |
| FPR↓    | 72.10 | 52.73   | 34.30 | 92.48 | 82.53  | 77.01 |

| (a) On separating tail samples from OOD data. |       |                      |              |       |       |       |  |  |  |
|-----------------------------------------------|-------|----------------------|--------------|-------|-------|-------|--|--|--|
| Metric                                        | C     | CIFAR10-LT CIFAR100- |              |       |       |       |  |  |  |
|                                               | OE    | OCL                  | COCL         | OE    | OCL   | COCL  |  |  |  |
| AUC↑                                          | 95.97 | 95.79                | 96.34        | 84.42 | 83.85 | 87.73 |  |  |  |
| AP-in↑                                        | 91.09 | 88.72                | 93.34        | 70.16 | 68.44 | 73.84 |  |  |  |
| AP-out↑                                       | 98.17 | 98.54                | <b>98.67</b> | 92.85 | 92.83 | 93.94 |  |  |  |
| FPR↓                                          | 20.57 | 22.67                | 19.59        | 70.17 | 67.94 | 66.01 |  |  |  |

(b) On separating head samples from OOD data.

Table 5: Comparison results on separating tail/head samples from OOD samples. The results are averaged over six OOD test datasets in the SC-OOD benchmark.

> differentiating tail and OOD samples is often more difficult than differentiating head and OOD samples

## Experiment/Ablation Study

![](_page_9_Picture_1.jpeg)

| ID Dataset  | TCPL                  | DHCL       | OLC | AUC↑  | AP-in↑ | AP-out↑ | FPR↓  | ACC↑  | ACC-t↑ |
|-------------|-----------------------|------------|-----|-------|--------|---------|-------|-------|--------|
|             | Baseline (OE)         |            |     | 89.76 | 89.45  | 87.22   | 53.19 | 73.59 | 55.91  |
|             | X                     | X          | ×   | 89.91 | 88.15  | 90.38   | 41.13 | 74.48 | 56.52  |
|             | 1                     | ×          | ×   | 91.23 | 89.47  | 91.51   | 34.27 | 74.58 | 57.10  |
| CIFAR10-LT  | ×                     | ✓          | ×   | 91.08 | 89.40  | 91.10   | 35.28 | 74.61 | 56.92  |
|             | ×                     | ×          | 1   | 92.06 | 91.29  | 91.78   | 34.41 | 79.40 | 76.57  |
|             | 1                     | ✓          | ×   | 91.74 | 89.91  | 92.04   | 33.85 | 75.20 | 57.30  |
|             | <ul> <li>✓</li> </ul> | ✓          | 1   | 93.28 | 92.24  | 92.89   | 30.88 | 81.56 | 77.90  |
|             | Ba                    | seline (OI | Ξ)  | 73.52 | 75.06  | 67.27   | 86.30 | 39.42 | 12.59  |
|             | X                     | X          | X   | 73.56 | 74.12  | 69.65   | 81.93 | 41.54 | 12.06  |
|             | 1                     | ×          | ×   | 75.14 | 75.74  | 71.25   | 78.39 | 41.93 | 13.53  |
| CIFAR100-LT | ×                     | ✓          | ×   | 74.70 | 75.36  | 70.63   | 78.96 | 42.42 | 13.33  |
|             | X                     | ×          | 1   | 75.51 | 75.83  | 71.66   | 77.57 | 45.62 | 28.44  |
|             | 1                     | 1          | ×   | 76.09 | 76.59  | 71.92   | 76.20 | 42.46 | 13.89  |
|             | 1                     | ✓          | ✓   | 78.25 | 79.37  | 73.58   | 74.09 | 46.41 | 29.44  |
|             | Ba                    | seline (OI | E)  | 68.33 | 43.87  | 82.54   | 90.98 | 44.00 | 7.65   |
|             | ×                     | X          | ×   | 68.67 | 43.11  | 84.15   | 77.46 | 44.77 | 8.02   |
|             | 1                     | ×          | ×   | 70.08 | 44.68  | 85.04   | 76.61 | 44.59 | 8.49   |
| ImageNet-LT | ×                     | ✓          | ×   | 69.64 | 44.11  | 84.83   | 76.62 | 45.00 | 8.43   |
| 0           | ×                     | ×          | 1   | 70.37 | 45.07  | 85.35   | 76.31 | 50.16 | 26.03  |
|             | 1                     | ✓          | X   | 70.78 | 45.19  | 85.61   | 76.26 | 45.24 | 9.92   |
|             |                       | 1          | 1   | 71.85 | 46 76  | 86.21   | 75 60 | 51 11 | 28.05  |

Table 6: Ablation study results on CIFAR10-LT, CIFAR100-LT and ImageNet-LT.

- Tail Class Prototype Learning (TCPL)
- Debiased Head Class Learning (DHCL)
- Outlier-Class-Aware Logit Calibration (OLC)

![](_page_9_Figure_7.jpeg)

Figure 3: Results on CIFAR10-LT. (Left) The mean prediction confidence of six OOD datasets belonging to each ID class. (Right) The mean OOD score for each ID class.

![](_page_10_Picture_0.jpeg)

![](_page_10_Picture_1.jpeg)

NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS

# Thank you