

Loss Decoupling for Task-Agnostic Continual Learning

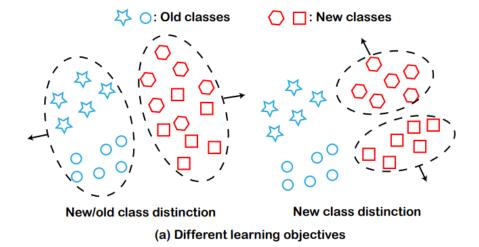
Yan-Shuo Liang and Wu-Jun Li*

National Key Laboratory for Novel Software Technology,
Department of Computer Science and Technology, Nanjing University, P. R. China
liangys@smail.nju.edu.cn,liwujun@nju.edu.cn

Background

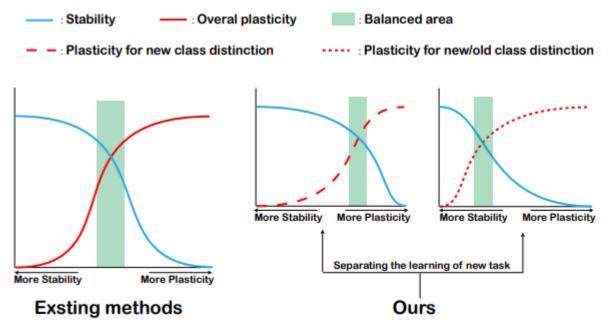
• Continual learning requires the model to learn multiple task sequentially.

• Task-agnostic problem vs Task-aware problem: Task identities :available or not.



Background

- Different learning objectives may cause different degrees of forgetting in CL.
- If a new learning objective leads to more forgetting, a good continual learner should pay more attention to the model's stability. Otherwise, a good continual learner should pay more attention to the model's plasticity.



(b) Stability-plasticity trade-off in different methods

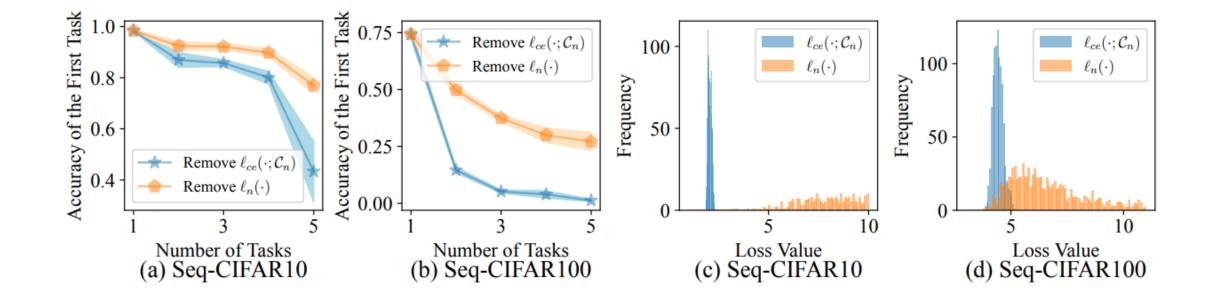
• Learning objective for replay-based methods:

 \triangleright We assume that \mathcal{L}_{new} is cross-entropy (CE) loss:

Analyzing Learning Objectives by Decoupling Loss

$$\mathcal{L}_{new}(f_{\mathbf{\Theta}}(\boldsymbol{x}), y) = -\log\left(\frac{\exp(o_{y})}{\sum_{i=m+1}^{m+n} \exp(o_{i})}\right) - \log\left(\frac{\sum_{i=m+1}^{m+n} \exp(o_{i})}{\sum_{i=1}^{m+n} \exp(o_{i})}\right)$$

$$=\ell_{ce}(f_{\mathbf{\Theta}}(\boldsymbol{x}), y; \mathcal{C}_{n}) + \ell_{n}(f_{\mathbf{\Theta}}(\boldsymbol{x})).$$
(3)



Loss Decoupling for Continual Learning

$$\mathcal{L} = \frac{1}{|\mathcal{B}_t|} \sum_{i=1}^{|\mathcal{B}_t|} \left(\beta_1 \ell_{ce}(f_{\mathbf{\Theta}}(\boldsymbol{x}_i^t), y_i^t; \mathcal{C}_n) + \beta_2 \ell_n(f_{\mathbf{\Theta}}(\boldsymbol{x}_i^t), y_i^t) \right) + \frac{1}{|\mathcal{B}_{\mathcal{M}}|} \sum_{i=1}^{|\mathcal{B}_{\mathcal{M}}|} \mathcal{L}_{rep}(f_{\mathbf{\Theta}}(\boldsymbol{x}_i^{\mathcal{M}}), y_i^{\mathcal{M}}).$$
 (4)

$$\Rightarrow \beta_1 = C, \quad \beta_2 = \rho \frac{|\mathcal{C}_n|}{|\mathcal{C}_o|}.$$

- ➤ Combining LODE with ER and DER++: The combinations of LODE with these two methods are direct.
- Combining LODE with ESMER:

$$\mathcal{L} = \frac{1}{|\mathcal{B}_t|} \sum_{i=1}^{|\mathcal{B}_t|} w_i \left(\beta_1 \ell_{ce}(f_{\Theta}(\boldsymbol{x}_i^t), y_i^t; \mathcal{C}_n) + \beta_2 \ell_n(f_{\Theta}(\boldsymbol{x}_i^t), y_i^t) \right) + \frac{1}{|\mathcal{B}_{\mathcal{M}}|} \sum_{i=1}^{|\mathcal{B}_{\mathcal{M}}|} \mathcal{L}_{rep}(f_{\Theta}(\boldsymbol{x}_i^{\mathcal{M}}), y_i^{\mathcal{M}}). \quad (6)$$

Relation with Existing Methods

 \triangleright Let $\beta_1 = 1$ and $\beta_2 = 0$, we can get the of experience replay with asymmetric cross entropy(ER-ACE):

$$\mathcal{L} = \frac{1}{|\mathcal{B}_t|} \sum_{i=1}^{|\mathcal{B}_t|} \mathcal{L}_{ce}(f_{\Theta}(\boldsymbol{x}_i^t), y_i^t; \mathcal{C}_n) + \frac{1}{|\mathcal{B}_{\mathcal{M}}|} \sum_{i=1}^{|\mathcal{B}_{\mathcal{M}}|} \mathcal{L}_{rep}(f_{\Theta}(\boldsymbol{x}_i^{\mathcal{M}}), y_i^{\mathcal{M}}). \tag{7}$$

Algorithm 1 Loss Decoupling (LODE) for Continual Learning

- 1: **Input:** a sequence of tasks with datasets $\{\mathcal{D}_1, ..., \mathcal{D}_T\}$, a neural network model $f_{\Theta}(\cdot)$.
- 2: Output: a learned neural network model $f_{\Theta}(\cdot)$.
- 3: while Get a mini-batch of samples \mathcal{B}_t from a task t do
- 4: Sample a mini-batch $\mathcal{B}_{\mathcal{M}}$ from memory \mathcal{M} ;
- 5: Specify the weights for the two different learning objectives by (5);
- 6: Get the losses for learning objective through (3);
- 7: Compute the final loss through (4).
- 8: Perform backward propagation and update the model $f_{\Theta}(\cdot)$ through SGD;
- 9: Update memory \mathcal{M} with \mathcal{B}_t through some memory update methods;
- 10: end while

Table 1: Classification results which are averaged across 5 runs.

Keeping Extra Model		Seq-CIFAR10		Seq-CIFAR100		Seq-TinyImageNet	
no	joint finetune	$91.86 \pm 0.26 \ 19.65 \pm 0.03$		$70.10{\scriptstyle \pm 0.60}\atop17.41{\scriptstyle \pm 0.09}$		$59.82 \pm 0.31 \\ 8.13 \pm 0.04$	
	Buffer Size	500	5120	500	5120	500	5120
no	SCR [27] PCR [25] MIR [3] ER-ACE [8] ER [9] LODE (ER) DER++ [7] LODE (DER++)	57.95 ± 1.57 65.74 ± 3.29 63.93 ± 0.39 68.45 ± 1.78 61.78 ± 0.72 68.87 ± 0.71 73.29 ± 0.96 75.45 ± 0.90	82.47 ± 0.44 82.58 ± 0.42 83.73 ± 0.97 83.49 ± 0.40 83.64 ± 0.95 83.73 ± 0.48 85.66 ± 0.14 85.78 ± 0.40	23.06 ± 0.22 28.38 ± 0.46 27.80 ± 0.52 40.67 ± 0.06 27.69 ± 0.58 41.52 ± 1.22 42.08 ± 1.71 46.31 ±1.01	45.02 ± 0.67 52.51 ± 1.61 53.73 ± 0.82 58.56 ± 0.91 53.86 ± 0.57 58.59 ± 0.48 62.73 ± 0.58 64.00 ± 0.48	8.37 ± 0.26 11.88 ± 1.61 11.22 ± 0.43 17.73 ± 0.56 10.36 ± 0.11 17.77 ± 1.03 19.28 ± 0.61 21.15 ±0.68	$\begin{array}{c} 18.20 \pm 0.48 \\ 26.39 \pm 1.64 \\ 30.60 \pm 0.40 \\ 37.99 \pm 0.17 \\ 27.54 \pm 0.30 \\ 38.34 \pm 0.04 \\ 39.72 \pm 0.47 \\ \textbf{40.31} \pm \textbf{0.03} \end{array}$
yes	CLS-ER [5] TAMiL [6] iCaRL [33] BIC [43] SSIL [1] ESMER [36] LODE (ESMER)	70.73 ± 0.54 74.25 ± 0.31 61.60 ± 2.03 52.63 ± 2.46 64.31 ± 0.89 71.48 ± 0.98 74.53 ± 0.95	85.73 ± 0.29 84.82 ± 1.77 72.01 ± 0.62 79.98 ± 1.49 71.72 ± 1.47 79.19 ± 0.68 85.34 ± 0.41	51.21 ± 0.84 50.62 ± 0.23 49.59 ± 0.95 37.06 ± 0.60 41.61 ± 0.37 52.37 ± 0.87 55.06 ± 0.35	$\begin{array}{c} 60.17{\pm}0.38 \\ 63.77{\pm}0.43 \\ 54.23{\pm}0.28 \\ 60.43{\pm}0.61 \\ 57.53{\pm}0.52 \\ 63.99{\pm}0.13 \\ \textbf{65.69}{\pm}\textbf{0.33} \end{array}$	29.44 ± 1.66 27.83 ± 0.41 20.01 ± 0.50 29.82 ± 0.88 16.80 ± 0.71 30.97 ± 1.12 32.15 ± 0.17	45.66 ± 0.47 43.00 ± 0.56 30.34 ± 0.18 37.60 ± 0.23 40.06 ± 0.58 44.07 ± 0.52 46.40 ± 0.46

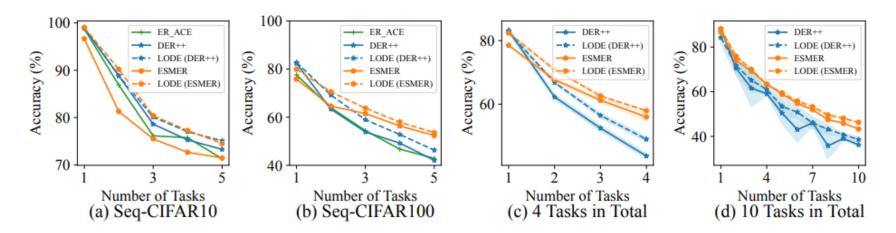


Figure 3: (a) and (b) show the variation of the accuracy for different methods on Seq-CIFAR10 and Seq-CIFAR100. (c) and (d) show the variation of accuracy on Seq-CIFAR100 with different number of tasks.

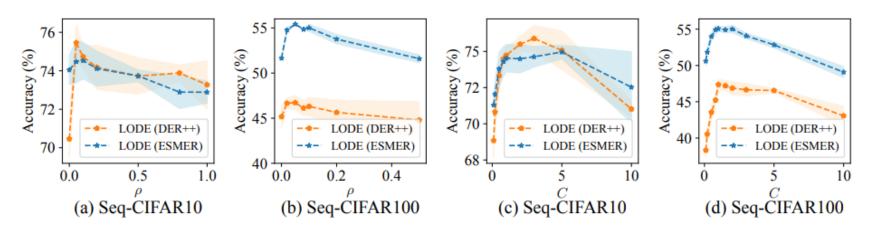


Figure 4: (a) and (b) show the variation of the accuracy for different ρ . (c) and (d) show the variation of the accuracy for different C.

Table 2: Ablation study on Seq-CIFAR10 and Seq-CIFAR100.

	LODE	(DER++)	LODE (ESMER)		
	Seq-CIFAR10	Seq-CIFAR100	Seq-CIFAR10	Seq-CIFAR100	
$\beta_1 = C, \beta_2 = \rho \frac{ \mathcal{C}_n }{ \mathcal{C}_o } \text{ (Ours)}$ $\beta_1 = \beta_2 = \rho \frac{ \mathcal{C}_n }{ \mathcal{C}_o }$ $\beta_1 = \beta_2 = C$	75.45±0.90	46.31±1.01	74.53±0.95	55.06±0.35	
$\beta_1 = \beta_2 = \rho \frac{ \mathcal{C}_n }{ \mathcal{C}_n }$	71.18 ± 0.80	37.49 ± 1.79	$73.41{\scriptstyle\pm0.40}$	$45.64{\scriptstyle\pm0.87}$	
$\beta_1 = \beta_2 = C^{ S }$	73.80 ± 0.72	$42.08\pm$ 1.71	73.08 ± 0.81	$52.37{\scriptstyle\pm0.87}$	
$\beta_1 = \rho \frac{ \mathcal{C}_n }{ \mathcal{C}_o }, \beta_2 = C$	$73.19{\scriptstyle\pm0.15}$	$40.79{\scriptstyle\pm0.12}$	$72.38{\scriptstyle\pm0.24}$	51.86 ± 0.35	

Table 3: Classification results which are averaged across 5 runs in the online continual learning setting.

Keeping Extra Model		Seq-CIFAR10	Seq-CIFAR100	Seq-TinyImageNet
	SCR [27]	69.49 ± 3.02	36.09 ± 0.82	20.04 ± 1.24
	PCR [25]	73.28 ± 1.83	34.89 ± 0.67	23.84 ± 0.60
	ER-ACE [8]	69.17 ± 1.64	35.24 ± 0.51	23.42 ± 0.34
no	MIR [3]	71.10 ± 1.59	35.08 ± 1.32	$20.64 \pm$ 1.17
no	ER [9]	67.93 ± 2.04	34.40 ± 1.13	21.14 ± 0.72
	LODE (ER)	69.63 ± 1.41	36.91 ± 1.38	24.31 ± 0.82
	DER++ [7]	72.30 ± 0.99	34.72 ± 1.51	20.40 ± 1.02
	LODE (DER++)	$74.00{\scriptstyle\pm0.08}$	$37.82 {\scriptstyle\pm1.16}$	$25.30{\scriptstyle\pm1.80}$

Thanks