LR \,Fn r@_»
*@% S g*ﬁ 15‘ i /U
;[f"BI l\g‘“‘; NANJING UNIVERSITY OF AHUINAIITK 5 ANMASTHIINALIE &

e Unsupervised Domain Adaptation by T

Backpropagation

Yaroslav Ganin, Victor Lempitsky

ICML 2015



I Background

% A

Wiy,

£ Sy b

= = ik

% YA AR - 2 i
/[j'll»lvn‘.\x\\‘; NANJING UNIVERSITY OF AFRTINALITIE S ANN ASTRUNALITTES

leaps In performance come only when a large amount of labeled training data Is
avallable.But for problems lacking labeled data, but it suffers from the shift in data
distribution from the actual data encountered at “test time”.

Learning a discriminative classifier or other predictor in the presence of a shift
between training and test distributions is known as domain adaptation (DA)

The appeal of the domain adaptation approaches is the ability to learn a mapping
between domains In the situation when the target domain data are either fully

unlabeled (unsupervised domain annotation) or have few labeled samples

authors focus on the harder unsupervised case
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Figure 1. The proposed architecture includes a deep feature extractor (green) and a deep label predictor (blue), which together form
a standard feed-forward architecture. Unsupervised domain adaptation 1s achieved by adding a domain classifier (red) connected to the
feature extractor via a gradient reversal layer that multiplies the gradient by a certain negative constant during the backpropagation-
based training. Otherwise, the training proceeds 1n a standard way and minimizes the label prediction loss (for source examples) and
the domain classification loss (for all samples). %l‘ﬂ.dlﬁﬂt reversal ensures that the feature distributions over the two domains are made
similar (as indistinguishable as possible for the domain classifier), thus resulting in thé"domain-invariant features.

forwardprop  backprop (and produced derivatives)




A £
b > by 2
- ’,‘,
: L m){y{ﬁlﬁt
§~ﬁ ~ B 28
5 ™ NANJING UNIVERSITY OF AFRUNALITIES AND ASTRUNALITIES

IINk&m&;

LossiTE WML LFESHROd: KSR RRIMLTUID LIRE.
TS SR IR RE P ER AR S (F
AGZIRARHIERE, BIRIMLE) | IXEWETES %

E(05,0y,00) = > Ly (Gy(Gy(xi:07):6,),u:) - SERXE XD RERRTIHAIREAR. BRI LT
i) &, FENER B AT EERREEIR, SEhRE
A Z La (Ga(Gy(x::67):04),1:) = R BRI BT LA R BRI R
i=1..N
— Z L;(g_ £ 0,) — N Z Lff[ ¢, 64) (1) ﬁgi@@%’gﬁey J\Zgééﬁﬁﬁﬂaid\{'{ﬁﬁgf)ﬁdﬂﬁﬁ%,
i=1.N i=1..N BRSRENIBINMES (W0oss. BEFF) BIFmNEmRHE,
" X2 BEEHRIFIERTPE S BN ERRKX D AR5
Here, L,(-,-) is the loss for label prediction (e.g. multino- HOREASRECINAY.

mial), L4(-,-) 1s the loss for the domain classification (e.g.

logistic), while L and L}, denote the corresponding loss {EAFIRgY=E4ef: XLeSHIE LTI E T XIEAE,

functions evaluated at the -th training example. S EEEASBERNER: SAVURETIRATRA
Based on our idea, we are seeking the parameters t/5,6,,, 04 AT SR
' EX7J TR

that deliver a saddle point of the functional (1):
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H:F = arg lléﬁx E(ﬁf‘ H,r.rr H:fj . (3]
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I Methods

Optimization with backpropagation S
The GRL as defined above is inserted between the feature
extractor and the domain classifier, resulting in the archi-

d Li_, dLY, tecture depicted in Figure 1. As the backpropagation pro-
by «— by —p 20, Aﬁ (4) cess passes through the GRL, the partial derivatives of the
s vy loss that is downstream the GRL (i.e. L;) w.r.t. the layer
;jj:.i‘ parameters that are upstream the GRL (i.e. ) get multi-
Oy 0y — n By (5) plied by —A, ie. %}‘ is effectively replaced with _J‘gTLT'
5 L{: Therefore, running SGD in the resulting model implements
Og —— Oa — f_d (6) the updates (4)-(6) and converges to a saddle point of (1).
b4 Mathematically, we can formally treat the gradient reversal

layer as a “pseudo-function™ R, (x) defined by two (incom-
patible) equations describing its forward- and backpropa-
gation behaviour:

where p 1s the learning rate (which can vary over time).
The updates (4)-(6) are very similar to stochastic gradient
descent (SGD) updates for a feed-forward deep model that

comprises feature extractor fed into the label predictor and Ry(x) =x (7)
into the domain classifier. The difference 1s the — A factor AR,
- - e i i - ' = —AlI (8)
in (4) (the difference is important, as without such factor, dx

BEREE (GRL) R FAMEEIEFHHRESME SRR [EBAXFE—NE, H15E)IZRnIE
., FHHEEEEW R FIRPPLEEIREE D SRAEE, Rl eSS AR D RHIEE R BRI
ARBRE. XiF, FERRHERENESWRAZY, B FHEMREE B iR LRIMEE,
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Relation to H,H-distance

Nyan(S,T) =2 sup |Peus[ha(f) # ha(f)]—
hy hageH

—Per[ha(F) # hao(F)]| (10)

defines a discrepancy distance between two distributions S
and T w.r.t. a hypothesis set /. Using this notion one can
obtain a probabilistic bound (Ben-David et al., 2010) on the
performance =7 (h) of some classifier & from 7 evaluated
on the target domain given its performance £5(h) on the
source domain:

cr(h) < es(h) + %dmﬂ(s,ﬂ Lo, an
where & and T are source and target distributions respec-
tively, and C' does not depend on particular h.
Consider fixed & and T over the representation space pro-
duced by the feature extractor GGy and a family of label
predictors H,. We assume that the family of domain classi-
fiers H is rich enough to contain the symmetric difference
hypothesis set of H,,:

HoAH, ={h|h=h1 @& ha, hi,ho e Hy} . (12)
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d'Hy-ﬂ'Hp {S'~ T} =
=2 sup  |Pes[h(f) =1] — Peor[h(f) =1]| <

hEH,AH,

< 2 sup |Pr.s[h(f) =1 — Pe7[h(f) = 1]| =
heHa

=2 sup |1 —a(h)| =2 sup [a(h) — 1]
heHa heHa

(13)

doan(S,T) (BEEFANIBiNEZENES) |, BA
LIBRtE/ N Bing EAEIRER, NMmiEEdudEE
MNAIERE IR SRETE E*]KHJ:EI’J Z{LBES].
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B Experiments

MNIST SYN NUMBERS SVHN SYN SIGNS

SOURCE

TARGET

MNIST-M

Figure 2. Examples of domain pairs used in the experiments. See Section 4.1 for details.

SOURCE MNIST SYN NUMBERS SVHN SYN SIGNS
METHOD

TARGET MNIST-M SVHN MNIST GTSRB
SOURCE ONLY D749 8665 5919 .7400
SA (FERNANDO ET AL., 2013) | .6078 (7.9%) 8672 (1.3%) 6157 (5.9%) 7635 (9.1%)
PROPOSED APPROACH 8149 (57.9%) .9048 (66.1%) .7107 (29.3%) .8866 (56.7%)
TRAIN ON TARGET 9891 .9244 9951 9987

Table 1. Classification accuracies for digit image classifications for different source and target domains. MNIST-M corresponds to
difference-blended digits over non-uniform background. The first row corresponds to the lower performance bound (i.e. if no adaptation
is performed). The last row corresponds to training on the target domain data with known class labels (upper bound on the DA perfor-
mance). For each of the two DA methods (ours and (Fernando et al., 2013)) we show how much of the gap between the lower and the
upper bounds was covered (in brackets). For all five cases, our approach outperforms (Fernando et al., 2013) considerably, and covers a

big portion of the gap.
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I Introduction
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Fig. 1. The test-time adaptation (TTA) paradigm aims to adapt the
pre-trained model to various types of unlabeled test data, including
single mini-batch, streaming data, or an entire dataset, before making
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Based on the characteristics of the test data

Firstly, test-time domain adaptation(TTDA), also known as source-free domain
adaptation(SFDA) utilizes all m test batches for multi-epoch adaptation before generating
final prediction

Secondly,test-time batch adaptation(TTBA) individually adapts the pre-trained model to one 2
or a few instances. That is to say, the predictions of each mini-batch are independent of the
predictions for the other mini-batches.

Thirdly , online test-time adaptation(OTTA) adapts the pre-trained model to the target data
{b,, - - -, b, } in an online manner, where each mini-batch can only be observed once.



I Source-Free Domain Adaptation

Definition 2 (Source-free Domain Adaptation, SFDA).
Given a well-trained classifier fs : Xs — Vs on the source
domain Ds and an unlabeled target domain D, source-free
domain adaptation aims to'yeverage the labeled knowledge
implied in fs to infer labels of all the samples in D, in a
transductive learning [26] manner. Note that, all test data
(target data) are required to be seen during adaptation.

So far as we know, the term source-free domain adaptation
is first proposed by Nelakurthi et al. [61], where they try to
leverage the noisy predictions of an off-the-shelf classifier
and a few labeled examples from the target domain, in
order to obtain better predictions for all the unlabeled target
samples. The definition here covers [61] as a special case,
where the classifier fs is not accessible but provides the
predictions of target data { fs(z)|z € Dr}.
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I Source-Free Domain Adaptation

1. Pseudo-labeling

To adapt a pre-trained model to an unlabeled target domain,

In h label
a majority of SFDA methods take inspiration from the semi- Since the pseudo labels of target

data are inevitably inaccurate under

supervised learning (SSL) field [146] and employ various _ _ _ _
prevalent SSL techniques tailored for unlabeled data dur- domain shift, there exist three different
ing adaptation. A simple yet effective technique, pseudo- solutions:

labeling [101], aims to assign a class label y € R for (1) improving the qua”ty of pseudo

each unlabeled sample z in A} and optimize the following

_ \ e : _ labels via denoising;
supervised learning objective to guide the learning process,

(2) filtering out inaccurate pseudo
minE, g1ep, Wpi(2) - dpi(y. p(y|2:0)), 1) labels with wpl(-);
(3) developing a robust divergence

where w,;(z) € R denotes the weight associated with :
o) 5 measure dpl(-, -) for pseudo-labeling.

each pseudo-labeled sample {z,7y}, and d,(-) denotes
the divergence between the predicted label probability
distribution and the pseudo label probability g, eg.,

(1) BEEBERSHIRENRE;

(2) FAWPL () SiEEAEBRIRE;
(3) FAE—MATFIrCHEENER
dpl (-, -)
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2. Consistency Training

As a prevailing strategy in recent semi-supervised learning
literature [99], [232], consistency regularization is primarily
built on the smoothness assumption or the manifold as-
sumption, which aims to enforce consistent network predic-
tions or features under variations in the input data space or
the model parameter space. Besides, another line of consis-
tency training methods tries to match the statistics of differ-
ent domains even without the source data. In the following,
we review different consistency regularizations under data
and model variations together with other consistency-based
distribution matching methods.
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&8]RIZ (Smoothness Assumption) :
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3. Clustering-based Training

Entropy minimization. To encourage confident predictions
for unlabeled target data, ASFA [155] borrows robust mea-
sures from information theory and minimizes the following
a-Tsallis entropy [250],

Ty

Jctea:_za_l l_zpﬂ yr‘|:r1) ]a (10)
c=1
A5 § Faxas \ 52 r
where o > 0 is called the entropic index. Note that, f Ij%ﬁﬁl—ﬁrra:ﬁﬁ\ rEIIJﬁEi_JZ BT
when o approaches 1, the Tsallis entropy exactly re- ISFDATS 'ii%:jj T ’)‘JEIIJZ_E%ZETE_E
covers the standard Shannon entropy in H(ps(y|z;)) = & S B iEAEHIERR R,

Y. po(yelzi) log pe(y.|x;). In practice, the conditional Shan-
non entropy H(pe(y|z)) has been widely used in SFDA
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4. Source Distribution Estimation

Another favored family of SFDA approaches compensates
for the absence of source data by inferring data from the
pre-trained model, which turns the challenging SFDA prob-
lem into a well-studied DA problem. Existing distribution
estimation methods could be divided into three categories:
data generation from random noises [12], [305], [306], data
translation from target samples [157], [255], [307], and data
selection from the target domain [93], [157], [274].

o)) i AAS
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5. Self-supervised Learning

Self-supervised learning is another learning paradigm tai-
lored to learn feature representation from unlabeled data
based on auxiliary prediction tasks (pretext tasks) [57], [90],
[91], [92], [93]. As mentioned above, the centroid-based
pseudo labels are similar to the learning manner of Deep-
Cluster [20]. Inspired by rotation prediction [57], SHOT++
[95] further comes up with a relative rotation prediction
task and introduces a 4-way classification head in addition
to the C-dimensional semantic classification head during
adaptation, which has been adopted by later methods [166],
[171], [217]. Besides, OnTA [264] and CluP [247] exploit the
self-supervised learning frameworks [91], [92] for learning
discriminative features as initialization, respectively. TTT++
[272] learns an extra self-supervised branch using con-
trastive learning [93] in the source model, which facilitates
the adaptation in the target domain with the same objective.
Recently, StickerDA [145] designs three self-supervision ob-
jectives (i.e., sticker location, sticker rotation, and sticker
classification) and optimizes the sticker intervention-based
pretext task with the auxiliary classification head in both the
source training and target adaptation phases.

IS KN TR ISR FE IR



I Test-Time Batch Adaptation

Definition 4 (Test-Time Batch Adaptation, TTBA). Given
a classifier fs learned on the source domain DS, and a
mini-batch of unlabeled target instances {z},z%,--- 2P}
from D7 under distribution shift (B > 1), test-time batch
adaptation aims to leverage the labeled knowledge implied
in fs to infer the label of each instance at the same time.

It is important to acknowledge that the inference of each
instance is not independent, but rather influenced by the
other instances in the mini-batch. Test-Time Batch Adapta-
tion (TTBA) can be considered a form of SFDA [7] when the
batch size B is sufficiently large. Conversely, when the batch
size B is equal to 1, TTBA degrades to TTIA [3]. Typically,
these schemes assume no access to the source data or the
ground-truth labels of data on the target distribution. In
the following, we provide a taxonomy of TTBA (including
TTIA) algorithms, as well as the learning scenarios.

) Ak

1. Batch Normalization Calibration

Normalization layers (e.g., batch normalization [575] and
layer normalization [377]) are considered essential compo-
nents of modern neural networks. For example, a batch nor-
malization (BN) layer calculates the mean and variance for
each activation over the training data A's, and normalizes
each incoming sample z; as follows,

— E[Xs]
W[XS] —+ €

where 7 and # denote the scale and shift parameters
(a.k.a.the learnable affine transformation parameters), and
¢ is a small constant introduced for numerical stability. The
BN statistics (i.e., the mean E[Xs] and variance V[Xg]) are
typically approximated using exponential moving averages
over batch-level estimates {y, 02},

+ .5:' (19)

Tg="7"

(1—p)-6%+p-of, (20)

where p is the momentum term, k& denotes the training step,
and the BN statistics over the k-th mini-batch {z;}”*, are

1 1
B Zifri: of = B Zi(ﬂ?i — ) (@)

=

s = (L=p)-fu+p- i, 6y =

pr =
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2. Model Optimization

(1) training with auxiliary tasks

3. Meta-Learning

(2) fine-tuning with unsupervised objectives MAML , a notable example of meta-learning,

learns a meta-model that can be quickly adapted
;md th’e testlinsta;lce. USpecifically, they adopt aucommon to perform well on a new task using a small
multi-task architecture, comprising the primary classifica- number of samples and gradient steps.

tion head h.(-;6.), the SSL head hs(-;#:), and the shared
feature encoder f.(::0.). The following joint objective of
TTT or OSHOT is optimized at the training stage,

g

0,07.07 = argmin’ S Lovi(1, 5; 60.0) + Lowi (2130, 6.). two distinct categ_orles: backward propagation,
Oe,0c,0s 521 o forward propagation

where £;,; denotes the primary objective (e.g., cross-entropy

for classification tasks), and L denotes the auxiliary SSL

objective (e.g., rotation prediction [27] and solving jigsaw

puzzles [51]). For each test instance x;, TTT [#] first adjusts

the feature encoder f.(; ) by optimizing the SSL objective,

O () = argmin Lgg (24307, 0,), (25)
fe

then obtains the prediction with the adjusted model as
U = he(fe(z;0c(x)): 0%). By contrast, OSHOT [390] mod-



I Online Test-Time Adaptation

Definition 5 (Online Test-Time Adaptation, OTTA). Given
a well-trained classifier fs on the source domain Dg and
a sequence of unlabeled mini-batches {By, By, - -}, online
test-time adaptation aims to leverage the labeled knowledge
implied in fs to infer labels of samples in B; under dis-
tribution shift, in an online manner. In other words, the
knowledge learned in previously seen mini-batches could
be accumulated for adaptation to the current mini-batch.
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I Online Test-Time Adaptation

SRR TSIE)RA

Previous studies [4153], [454] find that the model optimized
by TTA methods suffers from severe performance degra-
dation (named forgetting) on original training samples. To (1) {REE—/\Z(43)|
mitigate the forgetting issue, a natural solution is to keep a  N|{\iH—i53]
small subset of training data that is further learned at test
time as regularization [516], [526], [538]. PAD [541] comes
up with an alternative approach that keeps the relative re-  (2) JE/DZRIS2L, (YMERAJLINSH0#TM6E, M
lationship of irrelevant auxiliary data unchanged after test- RS EEAITL,
time optimization. AUTO [514] maintains a memory bank
to store easily recognized samples for replay and prevents
overfitting towards unknown samples at test time.
Another anti-forgetting solution lies in using merely a
few parameters for test-time model optimization. For exam-

R, 1ZFSEENIREALE
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