

Data Augmentation-Based Long-tailed Learning

CUDA: Curriculum of Data Augmentation for Long-tailed Recognition

Sumyeong Ahn*, Jongwoo Ko*, Se-Young Yun
KAIST AI
Seoul, Korea
{sumyeongahn, jongwoo.ko, yunseyoung}@kaist.ac.kr

ICLR 2023

Background

Long-tailed Recognition

Background

Taxonomy of existing deep long-tailed learning methods^[1]

[1] Zhang Y, Kang B, Hooi B, et al. Deep long-tailed learning: A survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence 2023.

Motivation

Few works have considered the influence of the degree of augmentation of different classes on class imbalance problems.

Controlling the strength of class-wise augmentation:

Methods

ParNeC 模式识别与神经计算研究组 PAttern Recognition and NEural Computing

CUDA includes two parts:

(1) a method to generate the augmented samples based on the given strength parameter;

(2) a method to measure a Level-of-Learning (LoL) score for each class.

Alogrithm

Algorithm 1: CUrriculum of Data Augmentation	Algorithm 2: V_{LoL} : Update LoL score
Input: LTR algorithm $\mathcal{A}_{LTR}(f, \mathcal{D})$, training dataset	Input: $\mathcal{D}_c, L, f_{\theta}, \gamma, T$
$\mathcal{D} = \{(x_i, y_i)\}_{i=1}^N$, train epochs E, aug. probability p_{aug} ,	Output: updated L
threshold γ , number of sample coefficient T.	Initialize: $check = 1$
Output: trained model f_{θ}	for $l \leq L$ do
Initialize: $L_c^0 = 0 \ \forall c \in \{1,, C\}$	$/*V_{correct}(\mathcal{D}_c, l, f_{\theta}, T) */$
for $e \leq E$ do	Sample $\mathcal{D}'_c \subset \mathcal{D}_c$ s.t. $ \mathcal{D}'_c = T(l+1)$
Update $L_c^e = V_{\text{LoL}}(\mathcal{D}_c, L_c^{e-1}, f_\theta, \gamma, T) \forall c \qquad // \text{ Alg. 2}$	Compute $v = \sum_{x \in \mathcal{D}'} \mathbb{1}_{\{f(\mathcal{O}(x;l)=c)\}}$
Generate $\mathcal{D}_{\text{CUDA}} = \{(\bar{x}_i, y_i) (x_i, y_i) \in \mathcal{D}\}$ where	if $v < \sqrt{T(l+1)}$ then
$(\mathcal{O}(m, I^e))$ with prob m	\downarrow check $\leftarrow 0$: break
$\bar{x}_i = \begin{cases} \mathcal{O}(x_i, L_{y_i}) & \text{with prob. } p_{\text{aug}} \end{cases}$	end
x_i otherwise.	and
$\mathbf{D}_{\mathrm{res}} \mathbf{I} \mathbf{T} \mathbf{D}_{\mathrm{res}} \mathbf{I}_{\mathrm{res}} \mathbf{T} \mathbf{D}_{\mathrm{res}} \mathbf{T} \mathbf{D}_{\mathrm{res}} \mathbf{I}_{\mathrm{res}} \mathbf{T} \mathbf{T} \mathbf{D}_{\mathrm{res}} \mathbf{I}_{\mathrm{res}} \mathbf{T} \mathbf{T} \mathbf{D}_{\mathrm{res}} \mathbf{I}_{\mathrm{res}} \mathbf{T} \mathbf{T} \mathbf{T} \mathbf{T} \mathbf{T} \mathbf{T} \mathbf{T} $	enu
Run LIR algorithm using $\mathcal{D}_{\text{CUDA}}$, <i>i.e.</i> , \mathcal{A}_{LTR} (J_{θ} , $\mathcal{D}_{\text{CUDA}}$).	if check = 1 then $L \leftarrow L + 1$
end	else $L \leftarrow L - 1$

Table 1: Validation accuracy on CIFAR-100-LT dataset. \dagger are from Park et al. (2022) and \ddagger , \star are from the original papers (Kim et al., 2020; Zhu et al., 2022). Other results are from our implementation. We format the first and second best results as **bold** and <u>underline</u>. We report the average results of three random trials.

Algorithm	Imba	alance Ratio	(IR)	Statistics (IR 100)				
Algorithin	100	50	10	Many	Med	Few		
CE	$38.7_{\pm 0.4}$	$43.4_{\pm 0.3}$	$56.5_{\pm 0.6}$	$66.2_{\pm 0.5}$	$37.3_{\pm 0.6}$	$8.2_{\pm 0.3}$		
CE + CMO (Park et al., 2022)	$42.0_{\pm 0.4}$	47.0 ± 0.5	$60.0_{\pm 0.4}$	$69.1_{\pm 0.4}$	$41.2_{\pm 0.6}$	$11.3_{\pm 0.7}$		
CE + CUDA	$42.7_{\pm 0.4}$	$47.2_{\pm 0.4}$	$59.6_{\pm 0.4}$	$71.6_{\pm 0.6}$	$42.3_{\pm 0.3}$	$9.4_{\pm 0.7}$		
CE + CMO + CUDA	$43.5_{\pm 0.5}$	48.7 ± 0.6	$60.0_{\pm 0.3}$	$70.0_{\pm 0.7}$	$43.4_{\pm 0.5}$	$12.7_{\pm 0.8}$		
CE-DRW (Cao et al. 2019)	$41.4_{\pm 0.2}$	45.5 ± 0.6	$57.8_{\pm 0.6}$	$62.8_{\pm 0.5}$	$41.7_{\pm 0.7}$	$16.1_{\pm 0.4}$		
CE-DRW + Remix (Chou et al., 2020) [†]	45.8	49.5	59.2	-	-	-		
CE-DRW + CUDA	$47.7_{\pm 0.4}$	$52.4_{\pm 0.5}$	$61.6_{\pm 0.5}$	$64.3_{\pm 0.4}$	$49.2_{\pm 0.6}$	$26.7_{\pm 0.6}$		
LDAM-DRW (Cao et al. 2019)	$42.5_{\pm 0.2}$	$47.4_{\pm 0.5}$	$57.6_{\pm 0.1}$	$62.8_{\pm 0.5}$	$42.3_{\pm 0.6}$	$19.0_{\pm 0.7}$		
LDAM + M2m (Kim et al., 2020) [‡]	43.5	-	57.6	-	-	-		
LDAM-DRW + CUDA	$47.6_{\pm 0.7}$	$51.1_{\pm 0.4}$	$58.4_{\pm 0.1}$	$67.3_{\pm 0.6}$	$50.4_{\pm 0.5}$	$21.4_{\pm 0.2}$		
BS (Ren et al., 2020)	$43.3_{\pm 0.4}$	46.9 ± 0.2	$58.3_{\pm 0.4}$	$61.6_{\pm 0.8}$	$42.3_{\pm 0.5}$	$23.0_{\pm 0.4}$		
BS + CUDA	$47.7_{\pm 0.3}$	$52.1_{\pm 0.4}$	$61.7_{\pm 0.5}$	$63.3_{\pm 0.4}$	$48.4_{\pm 0.4}$	$28.7_{\pm 0.5}$		
RIDE (3 experts) (Wang et al. 2021) [†]	48.6	51.4	59.8	-	-	-		
RIDE (3 experts)	$49.7_{\pm 0.2}$	52.7 ± 0.1	$60.2_{\pm 0.2}$	$67.7_{\pm 0.6}$	$51.5_{\pm 0.5}$	$26.7_{\pm 0.6}$		
RIDE + CMO (Park et al., 2022) [†]	50.0	53.0	60.2	-	-	-		
RIDE + CMO	$49.9_{\pm 0.1}$	$53.0_{\pm 0.1}$	$58.9_{\pm 0.3}$	$67.3_{\pm 0.3}$	$51.3_{\pm 0.6}$	$28.1_{\pm 0.4}$		
RIDE (3 experts) + CUDA	$50.7_{\pm 0.2}$	$53.7_{\pm 0.4}$	$60.2_{\pm 0.1}$	$69.2_{\pm 0.3}$	$52.8_{\pm 0.2}$	$27.3_{\pm 0.8}$		
BCL (Zhu et al., 2022)*	51.0	54.9	64.4	67.2	53.1	32.9		
BCL + CUDA	$52.3_{\pm 0.2}$	$56.2_{\pm 0.4}$	$64.6_{\pm 0.1}$	$66.4_{\pm 0.2}$	$54.2_{\pm 0.6}$	$33.9_{\pm 0.8}$		

Table 2: Validation accuracy on ImageNet-LT and iNaturalist 2018 datasets. \dagger indicates reported results from the Park et al. (2022) and \ddagger indicates those from the original paper (Kang et al., 2020). \star means we train the network with the official code in an one-stage RIDE.

Algorithm		Imagel	Net-LT		iNaturalist 2018					
Algorium	Many	Med	Few	All	Many	Med	Few	All		
CE^{\dagger}	64.0	33.8	5.8	41.6	73.9	63.5	55.5	61.0		
CE + CUDA	$67.2_{\pm 0.1}$	$47.0_{\pm 0.2}$	$13.5_{\pm 0.3}$	$47.3_{\pm 0.2}$	$74.6_{\pm 0.3}$	$64.9_{\pm 0.1}$	$57.2_{\pm 0.1}$	$62.5_{\pm 0.2}$		
CE-DRW (Cao et al. 2019)	$61.7_{\pm 0.1}$	$47.1_{\pm 0.3}$	$29.0_{\pm 0.3}$	$50.1_{\pm 0.1}$	$68.2_{\pm 0.2}$	$67.3_{\pm 0.2}$	$66.4_{\pm 0.1}$	$67.0_{\pm 0.1}$		
CE-DRW + CUDA	$61.8_{\pm 0.1}$	$48.3_{\pm 0.1}$	$30.3_{\pm 0.2}$	$51.0_{\pm 0.1}$	$68.8_{\pm 0.1}$	$68.1_{\pm 0.3}$	$66.6_{\pm 0.2}$	$67.5_{\pm 0.1}$		
LWS (Kang et al. 2020) [‡]	57.1	45.2	29.3	47.7	65.0	66.3	65.5	65.9		
cRT (Kang et al. 2020) [‡]	58.8	44.0	26.1	47.3	69.0	66.0	63.2	65.2		
cRT + CUDA	$62.3_{\pm 0.1}$	$47.2_{\pm 0.2}$	$28.4_{\pm 0.5}$	$50.2_{\pm 0.2}$	$68.2_{\pm 0.1}$	$67.8_{\pm 0.2}$	$66.4_{\pm 0.1}$	$67.3_{\pm 0.1}$		
LDAM-DRW (Cao et al. 2019) [†]	60.4	46.9	30.7	49.8	-	-	-	66.1		
LDAM-DRW + CUDA	$63.1_{\pm 0.1}$	$48.0_{\pm 0.3}$	$31.1_{\pm 0.2}$	$51.4_{\pm 0.1}$	$67.8_{\pm 0.2}$	$67.6_{\pm 0.2}$	$66.7_{\pm 0.3}$	$67.2_{\pm 0.2}$		
BS (Ren et al., 2020)	$61.1_{\pm 0.2}$	$48.5_{\pm 0.2}$	$31.8_{\pm 0.4}$	$50.9_{\pm 0.1}$	$65.5_{\pm 0.2}$	$67.5_{\pm 0.1}$	$67.5_{\pm 0.1}$	$67.2_{\pm 0.2}$		
BS + CUDA	$61.9_{\pm 0.1}$	$49.2_{\pm 0.0}$	$32.3_{\pm 0.4}$	$51.6_{\pm 0.1}$	$67.6_{\pm 0.1}$	$68.3_{\pm 0.1}$	$68.3_{\pm 0.1}$	$68.2_{\pm 0.1}$		
RIDE (3 experts) (Wang et al. 2021)*	$64.8_{\pm 0.1}$	$50.8_{\pm 0.2}$	$34.6_{\pm 0.2}$	$53.6_{\pm 0.1}$	$70.4_{\pm 0.1}$	$71.8_{\pm 0.1}$	$71.7_{\pm 0.1}$	$71.6_{\pm 0.1}$		
RIDE + CMO (Park et al., 2022)*	65.6	50.6	34.8	54.0	68.0	70.6	72.0	70.9		
RIDE (3 experts) + CUDA [*]	$65.9_{\pm 0.1}$	$51.7_{\pm 0.2}$	$34.9_{\pm 0.2}$	$54.7_{\pm 0.1}$	$70.7_{\pm 0.2}$	$72.5_{\pm 0.1}$	$72.7_{\pm 0.2}$	$72.4_{\pm 0.2}$		
BCL (Zhu et al., 2022)	$65.3_{\pm 0.2}$	$53.5_{\pm 0.2}$	$36.3_{\pm 0.3}$	$55.6_{\pm 0.2}$	$69.5_{\pm 0.1}$	$72.4_{\pm 0.2}$	$7\overline{1.7}_{\pm 0.1}$	$71.8_{\pm 0.1}$		
BCL + CUDA	$66.8_{\pm 0.1}$	$53.9_{\pm0.3}$	$36.6_{\pm 0.2}$	$56.3_{\pm0.1}$	$70.9_{\pm 0.2}$	$72.8_{\pm0.1}$	$72.0_{\pm 0.1}$	$72.3_{\pm 0.1}$		

Table 3: Comparisonfor CIFAR-LT-100 per-formance on ResNet-32with 400 epochs.

Algorithm	Imbalar 100	nce Ratio 50
PaCo	52.0	56.0
BCL	52.6	57.2
NCL	54.2	58.2
BCL + CUDA	53.5	57.4
NCL + CUDA	54.8	59.6

Figure 3: Analysis of how CUDA improves long-tailed recognition performance, classifier weight norm (top row) and feature alignment gain (bottom row) of the CIFAR-100-LT validation set. Notably that weight norm and feature alignment represent class-wise weight magnitude of classifier and ability of feature extractor, respectively. The detailed analysis is described in Section 4.3.

Table 4: Augmentation analysis on CIFAR-100-LT with IR 100. AA (Cubuk et al., 2019), FAA (Lim et al., 2019), DADA (Li et al., 2020b), and RA (Cubuk et al., 2020) with n = 1, m = 2 policies are used. C, S, I represent CIFAR, SVHN, and ImageNet policy.

	Vanilla		AA		FA	A	DA	DA	D۸	CUDA
	vamma	С	S	Ι	С	Ι	С	Ι	KA	CUDA
CE	38.7	41.7	40.7	40.1	42.3	40.8	41.0	41.2	40.5	42.7
CE-DRW	41.4	46.5	44.7	45.5	46.3	44.8	45.6	45.7	45.8	47.4
LDAM-DRW	42.5	47.0	44.7	44.9	46.6	45.6	45.9	46.5	44.0	47.2
BS	43.3	47.0	46.1	45.5	46.5	45.0	45.0	46.9	45.2	47.7
RIDE (3 experts)	49.7	49.5	47.3	45.5	49.8	50.6	50.4	50.5	47.9	50.7

Figure 4: Evolution of LoL score on various algorithms, CE, CE-DRW, LDAM-DRW, BS, and RIDE.

Kill Two Birds with One Stone: Rethinking Data Augmentation for Deep Long-tailed Learning

Binwu Wang², Pengkun Wang^{2,3*}, Wei Xu², Xu Wang^{2,3}, Yudong Zhang², Kun Wang², Yang Wang^{1,2,3*} ¹Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, China ²University of Science and Technology of China (USTC), Hefei, China ³Suzhou Institute for Advanced Research, USTC, Suzhou, China wbw1995@mail.ustc.edu.cn, pengkun@ustc.edu.cn weixu1223@mail.ustc.edu.cn, wx309@ustc.edu.cn {zyd2020,wk520529}@mail.ustc.edu.cn, angyan@ustc.edu.cn

ICLR 2024

Motivation

Whether it is optimal to utilize the same kind of augmentation strategy on all classes for long-tailed learning.

Figure 1: Motivation of DODA. In deep long-tailed learning, traditional data augmentation can significantly improve the average performance of the model, but it will potentially sacrifice certain classes (i.e., red box), especially tail classes.

Two 'birds' co-exist in long-tailed learning:

- (1) inherent data-wise imbalance;
- (2) extrinsic augmentation-wise imbalance.

The former is the inherent property of real-world data distributions, while the latter is the side effect caused by DA when improving model generalization.

This overall improvement is encouraging, but it also prompts us to think about how DA brings gains to the problem.

Theorem 1. Augmented samples produced by $\mathcal{O}(\cdot)$ do not respect the level-set of f^* . When we approximate the ideal model f^* by minimizing the training loss (i.e., 0 training error), the latter tends to zero, while the former is greater than zero due to the augmented samples deviate from the level set of f^* . In this case, the trained model f_{θ} is biased compared to the ideal model f^* .

$$\sum_{(x,y)\in\mathcal{D}} \mathbb{E}[||y - f^*(\mathcal{O}(x))||_2^2] > 0 \land \sum_{(x,y)\in\mathcal{D}} \mathbb{E}[||y - f_\theta(\mathcal{O}(x))||_2^2] = 0 \Longrightarrow bias$$
(1)

Theorem 2. Under the long-tailed distribution, minimizing the training loss (i.e., 0 training error) is equivalent to minimizing the training loss for each class. For class c and augmented samples $\{(\mathcal{O}(x), y)|y = c, (\mathcal{O}(x), y) \in \mathcal{D}\}$, the ideal trained model can minimize the training loss of class c, but when $\mathcal{O}(x)$ deviates from the level-set of f^* , DA will cause irreducible class-wise bias in f_{θ} .

$$\sum_{(x,y)\in\mathcal{D}|y=c} \mathbb{E}[||y-f^*(\mathcal{O}(x))||_2^2] > 0 \land \sum_{(x,y)\in\mathcal{D}|y=c} \mathbb{E}[||y-f_\theta(\mathcal{O}(x))||_2^2] = 0 \Longrightarrow class-wise \ bias$$
(2)

Figure 2: Impact of class-independent long-tailed DAs on classification accuracy on CIFAR-100-LT.

Key Observations:

- (1) All three types of DA can improve the average model performance;
- (2) The improvement in average performance inevitably sacrifices some classes, whether they are head or tail classes;
- (3) The phenomenon of sacrificing classes is especially evident on tail classes.

DA demonstrates its effectiveness by pleasing the 'strong' and exploiting the 'weak'!

The distribution span can be expressed as follows:

$$\mathbb{S}_c \Rightarrow (\mathbb{X} - \mathbb{X}_c)^2 - (\mathbb{Y} - \mathbb{Y}_c)^2 = \mathbb{R}_c^2$$

The distribution span after DA can be defined as follows:

$$\bar{\mathbb{S}}_{c_h} \Rightarrow (\mathbb{X} - \mathbb{X}_{c_h})^2 - (\mathbb{Y} - \mathbb{Y}_{c_h})^2 = (\mathbb{R}_{c_h} + \Delta_{c_h})^2$$
$$\bar{\mathbb{S}}_{c_t} \Rightarrow (\mathbb{X} - \mathbb{X}_{c_t})^2 - (\mathbb{Y} - \mathbb{Y}_{c_t})^2 = (\mathbb{R}_{c_t} + \Delta_{c_t})^2$$

The augmentation sensitivity ψ can be defined as the ratio of the marginal space to the base space, Under the same DA, tail classes have a higher augmentation sensitivity, indicating that tail classes are more sensitive to the marginal space.

$$\psi_{c_{t}} - \psi_{c_{h}} = 2\Delta_{c_{h}} \cdot \frac{\mathbb{R}_{c_{h}} - \mathbb{R}_{c_{t}}}{\mathbb{R}_{c_{h}} \mathbb{R}_{c_{t}}} + \Delta_{c_{h}}^{2} \cdot \frac{\mathbb{R}_{c_{h}}^{2} - \mathbb{R}_{c_{t}}^{2}}{\mathbb{R}_{c_{h}}^{2} \mathbb{R}_{c_{t}}^{2}} > 0$$

Methods

Figure 3: Overview of DODA. DODA allows each class to choose appropriate augmentation methods during training by maintaining a 'preference list' for each class.

Methods

for $c \leq C$ do Randomly select a DA $\mathcal{O}_{c}^{k}(\cdot)$ for class c according to the weight distribution \mathcal{Q}_{c} . $\mathcal{P}_{\mathcal{O}_{c}^{k}(\cdot)} = \frac{|\mathcal{Q}_{c}^{k}|}{\sum_{j \in \mathcal{Q}_{c}} |j|}$

where $Q_c = \{Q_c^1, Q_c^2, ..., Q_c^K\}$

end

Generate $\overline{\mathcal{D}} = \{(\overline{x_i}, y_i) | (x_i, y_i) \in \mathcal{D}\}$ where

$$\bar{x_i} = \begin{cases} \mathcal{O}_c^k(x_i), & \text{with prob. } p_{aug} \\ x_i, & \text{otherwise.} \end{cases}$$

Run LTL algorithm \mathcal{F} using $\overline{\mathcal{D}}$, i.e., $\mathcal{F}(f_{\theta}, \overline{\mathcal{D}})$.

for $c \leq C$ do Compute positive sample size $\nabla_{z_c^k}^{pos}$ for class c $\nabla_{z_c^k}^{pos} = \sum_{(\bar{x_i}, y_i) \in \bar{\mathcal{D}} | y_i = c} \mathbb{1}_{\{f_\theta(\bar{x_i}) = c\}}$ if $\nabla_{z_c^k}^{pos} > temp_c$ then $\mathcal{Q}_c^k \leftarrow \mathcal{Q}_c^k + 1$ // Up-weight the positive DA elif $\nabla_{z_c^k}^{pos} = temp_c$ then $\mathcal{Q}_c^k \leftarrow \mathcal{Q}_c^k$ else // Down-weight the negative DA if $\mathcal{Q}_c^k > 1$ then $\mathcal{Q}_c^k \leftarrow \mathcal{Q}_c^k - 1$ $else \mathcal{Q}_c^k \leftarrow 1$ $temp_c = \nabla_{z_c^k}^{pos}$

Table 1: Accuracy (%) on CIFAR-100-LT dataset (Imbalance ratio= $\{10, 50, 100\}$) with state-of-theart methods. **Blod** indicates the best performance while <u>underline</u> indicates the second best. (+) and (-) indicate the relative gain. We report the average results of three random trials.

Method	IR=10 IR=50 IR=10						IR=50					
henrou	Head	Medium	Tail	All	Head	Medium	Tail	All	Head	Medium	Tail	All
CE He et al. (2016)	63.2	40.3	-	56.5 (+0.0)	63.9	36.2	15.2	43.8 (+0.0)	65.6	36.2	8.2	38.1 (+0.0)
CE + CMO Park et al. (2022)	<u>67.0</u>	45.0	-	60.2 (+3.7)	68.6	37.8	18.7	47.0 (+3.2)	70.1	40.6	10.3	41.8 (+3.7)
CE + CUDA Ahn et al. (2023)	66.8	43.1	-	59.5 (+3.0)	68.3	38.4	13.7	46.2 (+2.4)	70.7	41.4	9.3	42.0 (+3.9)
CE + CMO + CUDA Ahn et al. (2023)	65.7	43.0	-	58.7 (+2.2)	67.6	39.2	17.6	47.0 (+3.2)	71.1	43.4	11.7	43.6 (+5.5)
CE + DODA	<u>67.0</u>	44.0	-	59.9 (+3.4)	71.2	40.3	12.6	48.0 (+4.2)	74.8	43.8	10.0	44.5 (+6.4)
CE + CMO + DODA	67.1	42.5	-	59.5 (+3.0)	<u>70.4</u>	41.2	19.7	49.3 (+5.5)	<u>73.2</u>	44.4	12.4	44.9 (+6.8)
CE-DRW Cao et al. (2019)	62.5	48.6	-	58.2 (+0.0)	60.6	39.0	22.9	45.0 (+0.0)	63.4	41.2	15.7	41.4 (+0.0)
CE-DRW + CUDA Ahn et al. (2023)	64.2	56.2	-	61.7 (+3.5)	63.8	48.0	37.0	52.5 (+7.5)	63.5	48.9	25.3	46.9 (+5.5)
CE-DRW + DODA	63.6	<u>56.7</u>	-	61.5 (+3.3)	63.4	47.4	38.9	52.5 (+7.5)	60.2	51.9	29.6	48.1 (+6.7)
LDAM-DRW Cao et al. (2019)	62.7	46.1	-	57.5 (+0.0)	63.0	41.2	25.1	47.2 (+0.0)	62.8	42.6	21.1	43.2 (+0.0)
LDAM-DRW + CUDA Ahn et al. (2023)	63.6	45.2	-	57.9 (+0.4)	66.2	46.2	26.4	50.8 (+3.6)	66.0	49.5	22.1	47.1 (+3.9)
LDAM-DRW + DODA	63.3	45.8	-	57.9 (+0.4)	64.7	46.3	27.5	50.5 (+3.3)	65.4	50.8	25.5	48.3 (+5.1)
BS Ren et al. (2020)	61.5	50.6	-	58.1 (+0.0)	60.3	41.3	34.3	47.9 (+0.0)	59.6	42.3	23.7	42.8 (+0.0)
BS + CUDA Ahn et al. (2023)	64.2	55.5	-	61.5 (+3.4)	63.6	48.4	37.3	52.7 (+4.8)	62.5	49.1	29.4	47.9 (+5.1)
BS + DODA	64.0	56.8	-	61.8 (+3.7)	62.2	51.2	41.5	54.0 (+6.1)	63.1	49.3	<u>31.2</u>	48.7 (+5.9)
RIDE (3 experts) Wang et al. (2021)	66.4	49.4	-	61.1 (+0.0)	65.7	47.7	31.8	52.2 (+0.0)	65.7	48.6	25.0	47.5 (+0.0)
RIDE + CMO Park et al. (2022	65.3	48.5	-	60.1 (-1.0)	67.8	47.0	33.4	53.1 (+0.9)	67.9	<u>51.2</u>	27.6	50.0 (+2.5)
RIDE (3 experts) + CUDA Ahn et al. (2023)	65.6	47.2	-	59.9 (-1.2)	68.2	46.1	29.3	52.1 (-0.1)	68.7	50.9	25.7	49.6 (+2.1)
RIDE (3 experts) + DODA	65.7	49.9	-	60.8 (-0.3)	67.0	46.5	33.6	52.6 (+0.4)	68.4	51.1	27.8	<u>50.2</u> (+2.7)
BCL Zhu et al. (2022)	62.2	51.8	-	58.9 (+0.0)	61.6	43.1	34.3	49.1 (+0.0)	63.1	42.9	23.9	44.2 (+0.0)
BCL + CUDA Ahn et al. (2023)	65.3	56.6	-	<u>62.6</u> (+3.7)	64.0	47.4	39.4	52.7 (+3.6)	64.7	49.7	29.1	48.8 (+4.6)
BCL + DODA	65.6	56.1	-	62.7 (+3.8)	64.9	48.0	<u>40.6</u>	<u>53.6</u> (+4.5)	66.0	50.7	33.8	51.0 (+6.8)

Method	ImageNet-LT					iNatura	alist 201	8
	Head	Medium	Tail	All	Head	Medium	Tail	All
CE He et al. (2016)	64.0	33.8	5.8	41.6 (+0.0)	73.9	63.5	55.5	61.0 (+0.0)
CE + CUDA Ahn et al. (2023)	<u>67.1</u>	47.1	13.4	47.2 (+5.6)	<u>74.6</u>	65.0	57.2	62.5 (+1.5)
CE + DODA	67.4	47.5	13.9	48.1 (+6.5)	74.9	66.0	58.4	63.6 (+2.6)
CE-DRW Cao et al. (2019)	61.7	47.3	28.8	50.1 (+0.0)	68.2	67.3	66.4	67.0 (+0.0)
CE-DRW + CUDA Ahn et al. (2023)	61.7	48.4	30.5	51.1 (+1.0)	68.8	67.9	66.5	67.4 (+0.4)
CE-DRW + DODA	62.4	48.5	31.3	52.2 (+2.1)	69.0	68.2	67.8	68.2 (+1.2)
LWS Kang et al. (2020)	57.1	45.2	29.3	47.7 (+0.0)	65.0	66.3	65.5	65.9 (+0.0)
cRT Kang et al. (2020)	58.8	44.0	26.1	47.3 (+0.0)	69.0	66.0	63.2	65.2 (+0.0)
cRT + CUDA Ahn et al. (2023)	62.3	47.2	28.1	50.2 (+2.9)	68.2	67.9	66.4	67.3 (+2.1)
cRT + DODA	62.8	47.7	28.9	51.3 (+3.6)	69.2	68.3	67.6	68.5 (+3.3)
LDAM-DRW Cao et al. (2019)	60.4	46.9	30.7	49.8 (+0.0)	-	-	-	66.1 (+0.0)
LDAM-DRW + CUDA Ahn et al. (2023)	63.2	48.2	31.2	51.5 (+1.7)	68.0	67.5	66.8	67.3 (+1.2)
LDAM-DRW + DODA	63.7	48.6	31.9	52.4 (+2.6)	68.6	68.1	67.9	68.7 (+2.6)
BS Ren et al. (2020)	60.9	48.8	32.1	51.0 (+0.0)	65.7	67.4	67.5	67.3 (+0.0)
BS + CUDA Ahn et al. (2023)	61.8	49.1	31.8	51.5 (+0.5)	67.6	68.2	68.3	68.2 (+0.9)
BS + DODA	61.9	49.5	32.4	52.0 (+1.0)	68.1	68.9	69.5	69.4 (+2.1)
RIDE (3 experts) Wang et al. (2021)	64.9	50.4	34.4	53.6 (+0.0)	70.4	71.8	71.8	71.6 (+0.0)
RIDE + CMO Park et al. (2022)	65.6	50.6	34.8	54.0 (+0.4)	68.0	70.6	72.0	70.9 (-0.7)
RIDE (3 experts) + CUDA Ahn et al. (2023)	66.0	51.7	34.7	54.7 (+1.1)	70.6	72.6	72.7	72.4 (+1.4)
RIDE (3 experts) + DODA	66.6	51.9	35.9	55.8 (+2.2)	70.9	72.4	73.9	73.7 (+2.8)
BCL Zhu et al. (2022)	65.3	53.5	36.3	55.6 (+0.0)	69.4	72.4	71.8	71.8 (+0.0)
BCL + CUDA Ahn et al. (2023)	66.8	<u>53.9</u>	<u>36.6</u>	<u>56.3</u> (+0.7)	70.8	72.7	72.0	72.2 (+0.4)
BCL + DODA	66.9	54.1	37.4	56.9 (+1.3)	71.2	73.2	<u>73.4</u>	73.7 (+1.9)

Table 2: Accuracy (%) on ImageNet-LT and iNaturalist 2018 datasets with state-of-the-art methods.

Does DODA make fewer classes be 'sacrificed'?

Figure 4: Visualization of the accuracy of each class between CE and CE with CUDA.

Why DODA can alleviate the long-tailed problem?

Figure 5: Trend of the selection hierarchies during training.

What are the trends in DAs favored by classes?

Figure 6: Class and 'its' preferred DA on BS and CIFAR-100-LT (IR=100).

ParNpC 模式识别与神经计算研究组 PAttern Recognition and NEural Computing

Would other augmentation methods be better?

Figure 7: DA analysis on various algorithms, CE, CE-DRW, LDAM-DRW, BS, and RIDE.

Thanks

