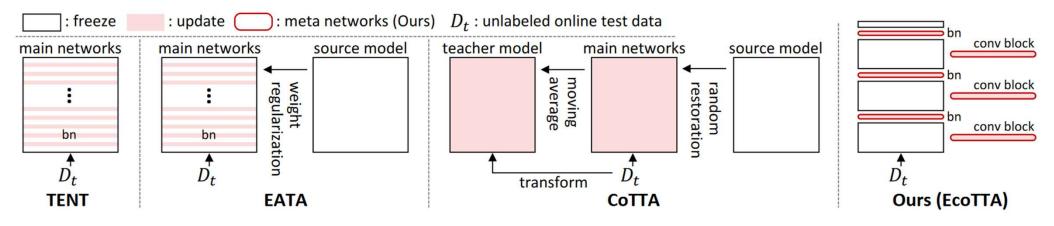

EcoTTA: Memory-Efficient Continual Test-time Adaptation via Selfdistilled Regularization

Junha Song^{1,2*}, Jungsoo Lee¹, In So Kweon², Sungha Choi^{1†} ¹Qualcomm AI Research[‡], ²KAIST

CVPR 2023

Reducing memory cost in Test Time Adaptation

Architecture Comparison



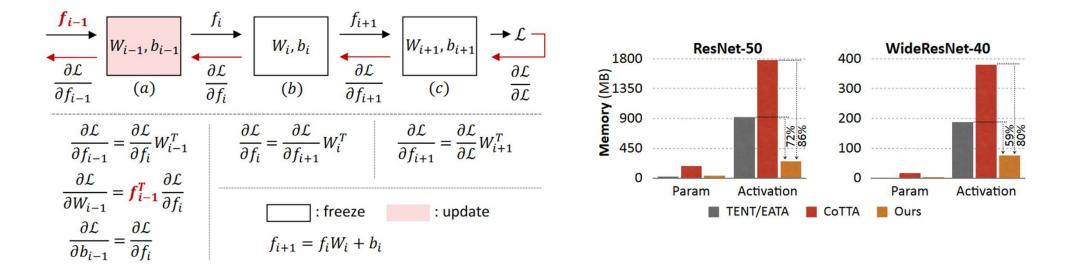


Figure 2. Architecture for test-time adaptation. We illustrate TTA methods: TENT [65], EATA [50], CoTTA [66], and Ours (EcoTTA). TENT and EATA update *multiple* batch norm layers, in which large activations have to be stored for gradient calculation. In CoTTA, an entire network is trained with additional strategies for continual adaptation that requires a significant amount of both memory and time. In contrast, our approach requires a minimum size of activations by updating only *a few* layers. Also, stable long-term adaptation is performed by our proposed regularization, named self-distilled regularization.

Given a linear layer $f_{i+1} = f_i \mathcal{W} + b$

The gradient can be calculated as
$$\frac{\partial \mathcal{L}}{\partial f_i} = \frac{\partial \mathcal{L}}{\partial f_{i+1}} \mathcal{W}^T, \quad \frac{\partial \mathcal{L}}{\partial \mathcal{W}} = f_i^T \frac{\partial \mathcal{L}}{\partial f_{i+1}}.$$

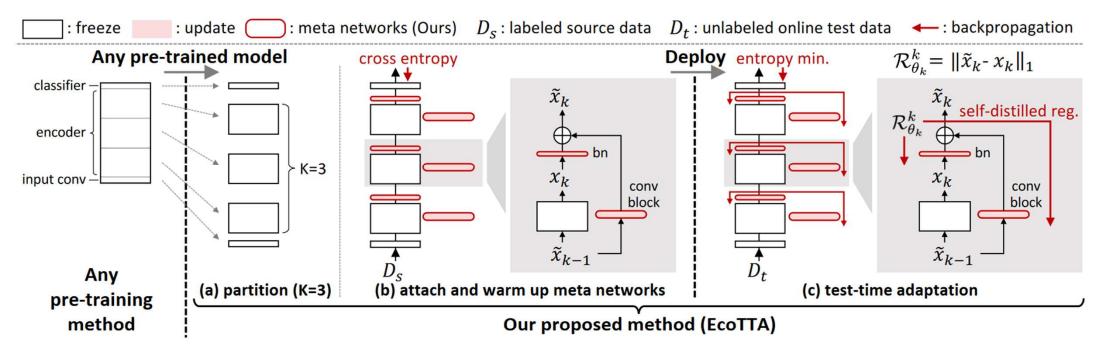
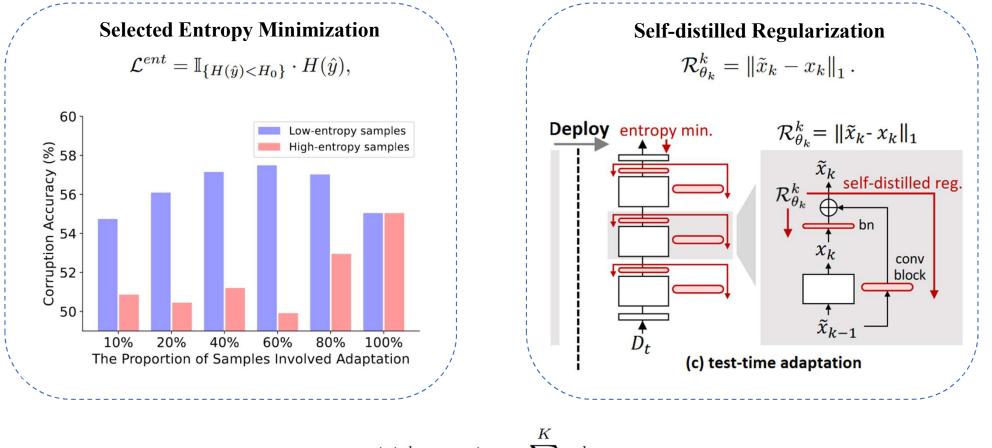
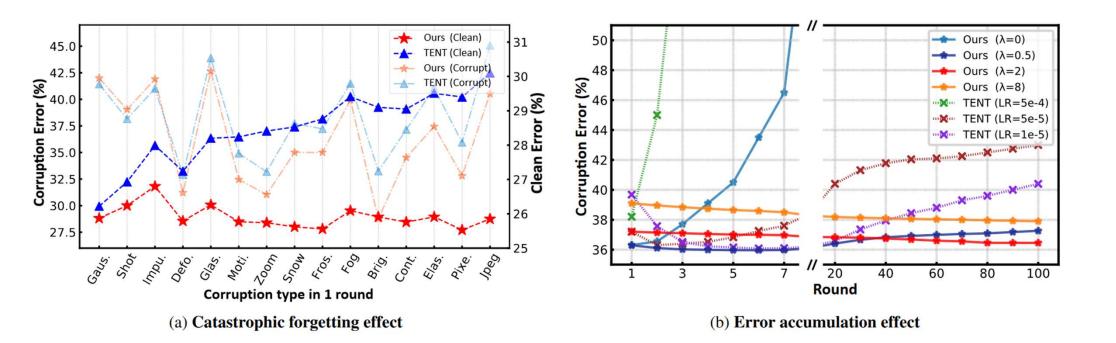



Figure 3. Overview of our approach. (a) The encoder of the pre-trained model is divided into K parts (*i.e.*, model partition factor K). (b) Before deployment, the meta networks are attached to each part of the original networks and pre-trained with source dataset \mathcal{D}_s . (c) After the model is deployed, *only* the meta networks are updated with unsupervised loss (*i.e.*, entropy minimization) on target data \mathcal{D}_t , while the original networks are frozen. To avoid error accumulation and catastrophic forgetting by the long-term adaptation, we regularize the output \tilde{x}_k of each group of the meta networks leveraging the output x_k of the *frozen* original network, which preserves the source knowledge.

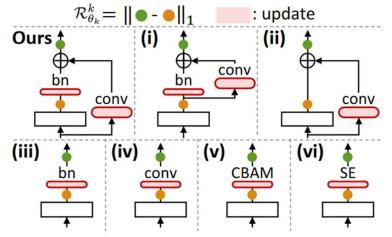
$$\mathcal{L}_{\theta}^{total} = \mathcal{L}_{\theta}^{ent} + \lambda \sum_{k}^{K} \mathcal{R}_{\theta_{k}}^{k},$$

Experiments

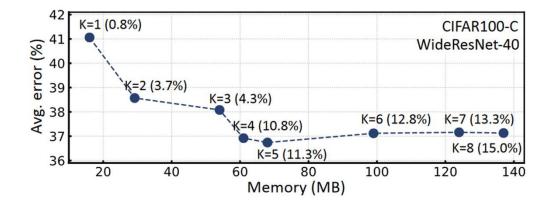

	WideResNet-40 (AugMix)		WideResNet-28		ResNet-50			WideResNet-40 (AugMix)		ResNet-50	
Method	Avg. err 🛓	Mem. (MB)	Avg. err 1	Mem. (MB)	Avg. err 🛓	Mem. (MB)	Method	Avg. err 1	Mem. (MB)	Avg. err 🛓	Mem. (MB)
Source	36.7	11	43.5	58	48.8	91	Source	69.7	11	73.8	91
BN Stats Adapt [49]	15.4	11	20.9	58	16.6	91	BN Stats Adapt [49]	41.1	11	44.5	91
Single do. TENT [65]	12.7	188	19.2	646	15.0	925	Single do. TENT [65]	36.7	188	40.1	926
Continual TENT	13.3	188	20.0	646	15.2	925	Continual TENT	38.3	188	45.9	926
TTT++ [42]	14.6	391	20.3	1405	16.1	1877	TTT++ [42]	41.0	391	44.2	1876
SWR&NSP [9]	12.1	400	17.2	1551	15.4	1971	SWR&NSP [9]	36.6	400	44.1	1970
NOTE [17]	13.4	188	20.2	646	-	-	NOTE [17]	42.8	188	-	-
EATA [50]	13.0	188	18.6	646	14.2	925	EATA [50]	37.1	188	39.9	926
CoTTA [66]	14.0	409	17.0	1697	14.4	2066	CoTTA [66]	38.1	409	40.2	2064
Ours (K=4)	12.2	80 (80, 58%)	<u>16.9</u>	404 (76, 38%)	14.4	296 (86, 68%)	Ours (K=4)	<u>36.4</u>	80 (80, 58%)	39.5	296 (86, 68%)
Ours (K=5)	12.1	92 (77, 51%)	16.8	471 (72, 27%)	14.1	498 (76, 46%)	Ours (K=5)	36.3	92 (77, 51%)	39.3	498 (76, 46%)

(a) CIFAR10-C with severity level 5

(b) CIFAR100-C with severity level 5


Experiments

Experiments


(a) Visualization of networks variants

Avr. err	CIFAR10-C	CIFAR10-C	CIFAR100-C	
Arch	WRN-28	WRN-40	WRN-40	
(i)	18.1	12.6	37.2	
(ii) Ours w\o BN	18.7	13.7	38.2	
(iii) Ours w\o Conv	20.7	14.9	40.1	
(iv) Conv	60.6	73.3	77.2	
(v) CBAM [67]	21.4	15.1	40.9	
(vi) SE [30]	22.3	16.2	40.5	
Ours	16.8	12.1	36.3	

Model	#Block	Avg. err
	3,3,3,3	17.3
WRN-28 (12) CIFAR10-C	4,4,2,2	17.9
en mario e	3,3,3,3	16.9
WRN-40 (18) CIFAR10-C	4,4,5,5	12.8
	6,6,3,3	13.7
chrintio c	3,3,3,3 4,4,2,2 2,2,4,4 4,4,5,5 6,6,3,3 3,3,6,6 4,4,5,5 6,6,3,3	12.2
WRN-40 (18)	4,4,5,5	36.9
WRN-40 (18) CIFAR100-C	6,6,3,3	38.5
christio c	3,3,6,6	36.4

(b) Meta network design (K=5)

(c) # of blocks of each partition (K=4)

Thanks