

Learning Equi-angular Representations for Online Continual Learning

Minhyuk Seo^{1,†} Hyunseo Koh¹ Wonje Jeung¹ Minjae Lee¹ San Kim¹ Hankook Lee^{2,3} Sungjun Cho² Sungik Choi² Hyunwoo Kim^{4,*} Jonghyun Choi^{5,*}

¹Yonsei Univ. ²LG AI Research ³Sungkyunkwan Univ. ⁴Zhejiang Lab ⁵Seoul National Univ. {dbd0508, specific0924, reccos1020, nasmik419}@yonsei.ac.kr khs8157@gmail.com, {sungik.choi,sungjun.cho}@lgresearch.ai hankook.lee@skku.edu, hwkim@zhejianglab.com, jonghyunchoi@snu.ac.kr

CVPR 2024

Preliminary: Standard Learning vs Continual Learning

Preliminary: Anytime Inference Performance [1, 2]

Continual learning in the real-world scenario is endless in learning
 => Must be available for inference at any time

ParN

[1] Bang et al., Rainbow Memory: Continual Learning with a Memory of Diverse Samples, CVPR 2021
[2] Caccia et al., On Anytime Learning at Macroscale, CoLLAs 2022
[3] Koh et al., Online continual learning on class incremental blurry ta:sk configuration with anytime inferenceICLR 2022

Imbalanced Distribution in Continual Learning

• Continual Learning has an imbalanced distribution at each intermediate time point, even if the overall dataset is balanced since new data are encountered continuously

Problem in Imbalanced Distribution) Minority Collapse [1] ParNL 模式识别与神经计算研究

- Recently, minority collapse, the phenomenon in which angles between classifier vectors for minor classes become narrow, has been proposed as a fundamental issue in training with imbalanced data (minor class: the class that have relatively small # of samples)
- Imbalanced Ratio (R)
 - = # of samples for Major classes # of samples for Minor classes

[1] Fang et al., Exploring Deep Neural Networks via Layer-Pedeled Model: MinorityCollapse in Imbalanced Training, PNAS 2021 Avg Cosine similarity between classifier vectors of minor classes

Neural Collapse [1] in Balanced Distribution

- Sufficient training on a balanced dataset leads to Neural Collapse.
- A phenomenon that classifier vectors and the last layer activations for all classesconverge into an optimal geometric structure, named thesimplex equiangular tightframe (ETF)

Neural Collapse [1] in Balanced Distribution

 It was proven that sufficient training on a balanced dataset leadds to Neural Collapse, aphenomenon that classifier vectors and the last layer activations for all classes convergeinto an optimal geometric structure, named the simplex equiangular tight frame (ETF)

$$\mathbf{W}_{\text{ETF}} = [\mathbf{w}_1, \mathbf{w}_2, ..., \mathbf{w}_K] \in \mathbb{R}^{d \times K} \text{, which satisfy } \mathbf{w}_i^T \mathbf{w}_j = \begin{cases} 1, & i = j \\ -\frac{1}{K-1}, & i \neq j \end{cases}$$

[1] Fang et al., Exploring Deep Neural Networks via Layer-Pedeled Model: MinorityCollapse in Imbalanced Training, PNAS 2021

ParN

Can we induce neural collapse in CL setups?

Inducing NC in Offline CL Using a Fixed ETF Classifier [1] ParNpC 模式识别与神经计算研究组

[1] Yang et al., Neural Collapse Inspired Feature-Classifier Aliggnment for Few-Shot ClassIncremental Learning, ICLR 2023 Spotlight

Promote inducing neural collapse in Online CL!

Overview of EARL: Equi-Angular Representation Learning

Training Phase - Preparatory Data Training (PDT)

• To mitigate bias, it is ideal to pull data of the class that will be introduced in the future to another classifier in advance.

=> However, we can't know which class will encounter

 Therefore, we train the model to recognize that data distinguished from existing classes should not be classified to those existing classees.

=> Named **Preparatory Data**

- Pulling features of preparatory data to remaining classifier vectors
- Preventing biased predictions when new classes arrive

=> facilitating rapid convergence to the ETF classifier

Obtaining Preparatory Data Using Negative Transformation ParNL 模式识别与神经计算研究组

Negative Transformation [1, 2]

- Transformation to make animage that is distinct from the existing image
- We use rotation 90, 180, and 270
- ex. dog => upside-down dog

[1] Sinha et al., Negative data augmentation, arXiv 2021

[2] Wang et al., Resmooth: Detecting and utilizing ood samples wheen training with data augmentation. IEEE TNNLS, 2022

Inference Phase - Residual Correction

- Even with preparatory data training, there mayexist discrepancy between newly encounteredclass and corresponding classifiers
- ParNeC 模式识别与神经计算研究 PAttern Recognition and NEural Comput Wa f(xeval) Residual Wb

 (feature, residual) pairs arestored in feature-residual Memory during training,

f: model, h: model output, w: ETF classifier vector, each color denotes each classes

Inference Phase - Residual Correction

 To estimate correct residual, we use similarity btw stored features and inference feature

f: model, h: model output, w: ETF classifier vector, each color denotes each classes

Results: Benefit of the Proposed Components

模式识别与袖经计算研究组

PAttern Recognition and NEural Computing

Par

 PDT and RC increases alignment features and the GT classifier vectors between

Results: Quantitative Analysis

Methods	CIFAR-10				CIFAR-100			
	Disjoint		Gaussian-Scheduled		Disjoint		Gaussian-Scheduled	
	$A_{ m AUC}$ \uparrow	$A_{last} \uparrow$	$A_{\text{AUC}} \uparrow$	$A_{last} \uparrow$	$A_{ m AUC}$ \uparrow	$A_{last}\uparrow$	$A_{ m AUC}$ \uparrow	$A_{last}\uparrow$
ER	75.94 ± 0.86	63.56 ± 1.32	60.13±0.56	64.81 ± 2.70	52.95 ± 1.25	42.82 ± 0.05	41.12 ± 0.56	42.74 ± 1.09
DER++	74.57 ± 0.89	60.80 ± 1.31	59.88 ± 0.37	64.75 ± 2.29	54.51 ± 1.18	42.86 ± 0.63	43.28 ± 0.57	44.60 ± 1.46
ER-MIR	75.89 ± 1.02	61.93 ± 0.93	60.39 ± 0.48	61.64 ± 3.86	52.93 ± 1.44	42.47 ± 0.13	41.19 ± 0.63	42.93 ± 1.18
SCR	75.61 ± 0.93	56.52 ± 0.52	60.62 ± 0.43	58.41 ± 2.39	41.84 ± 0.74	36.00 ± 0.83	31.33 ± 0.41	32.11±0.39
EWC	75.25 ± 0.78	60.80 ± 2.20	59.62 ± 0.31	64.24 ± 1.97	52.08 ± 0.83	41.55 ± 0.85	38.22 ± 0.50	42.52 ± 0.58
REMIND	69.55 ± 0.91	53.34 ± 1.01	58.01 ± 0.72	59.27 ± 1.86	40.87 ± 0.76	36.17 ± 1.83	23.40 ± 2.25	28.78 ± 1.71
X-DER	74.34 ± 0.40	62.31 ± 2.28	57.05 ± 3.76	62.89 ± 2.71	52.80 ± 1.61	43.73 ± 0.86	41.94 ± 0.57	44.90 ± 1.04
ODDL	75.03 ± 1.00	61.61 ± 3.55	65.46 ± 0.46	66.19 ± 2.08	40.26 ± 0.50	41.88 ± 4.52	38.82 ± 0.49	41.35 ± 1.08
MEMO	73.21 ± 0.49	62.47 ± 3.38	59.26 ± 0.90	62.01 ± 1.17	40.60 ± 1.11	39.87 ± 0.46	23.41 ± 1.63	32.74 ± 2.11
EARL (Ours)	79.62±0.62	67.58±1.51	70.56±0.37	71.46±1.00	57.12±1.22	45.15±0.68	48.05±0.49	46.59±0.35
		TinyIm	ageNet			Imagel	Net-200	
Methods	Disj	TinyIm	ageNet Gaussian-	Scheduled	Disj	Imagel oint	Net-200 Gaussian-	Scheduled
Methods	${ m Disj} \ A_{ m AUC} \uparrow$	$\begin{array}{c} {\rm TinyIm}\\ {\rm oint}\\ A_{last}\uparrow \end{array}$	ageNet Gaussian- A _{AUC} ↑	Scheduled $A_{last} \uparrow$	Disj $A_{ ext{AUC}}$ \uparrow	Imagel oint $A_{last} \uparrow$	Net-200 Gaussian- $A_{ m AUC}\uparrow$	Scheduled $A_{last} \uparrow$
Methods ER	$Disj A_{AUC} \uparrow \overline{37.43 \pm 1.05}$	TinyIm oint $A_{last} \uparrow$ 27.47±0.63	ageNet Gaussian- A _{AUC} ↑ 26.37±0.89	Scheduled $A_{last}\uparrow$ 25.79±0.44	$Disj \frac{A_{\text{AUC}}\uparrow}{41.51\pm0.76} $	Imagel oint $A_{last} \uparrow$ 30.87 ± 0.72	Net-200 Gaussian- $A_{AUC} \uparrow$ 32.39 \pm 0.36	Scheduled $A_{last} \uparrow$ $\overline{33.09 \pm 0.37}$
Methods ER DER++	Disj $A_{AUC} \uparrow$ 37.43 ± 1.05 38.05 ± 1.07	TinyIm joint $A_{last} \uparrow$ 27.47 ± 0.63 25.41 ± 0.50	ageNet Gaussian- A _{AUC} ↑ 26.37±0.89 31.04±0.67	Scheduled $A_{last} \uparrow$ 25.79 ± 0.44 27.68 ± 0.77	Disj $A_{AUC} \uparrow$ 41.51 ± 0.76 43.20 ± 0.31	Imagel oint $A_{last} \uparrow$ 30.87 ± 0.72 34.06 ± 0.50	Net-200 Gaussian- $A_{AUC} \uparrow$ 32.39 ± 0.36 35.22 ± 0.26	Scheduled $A_{last} \uparrow$ 33.09 ± 0.37 37.88 ± 0.97
Methods ER DER++ ER-MIR	Disj $A_{AUC} \uparrow$ 37.43 ± 1.05 38.05 ± 1.07 37.81 ± 1.06	TinyIm ioint $A_{last} \uparrow$ 27.47±0.63 25.41±0.50 26.72±0.86	ageNet Gaussian- A _{AUC} ↑ 26.37±0.89 31.04±0.67 26.22±0.69	Scheduled $A_{last} \uparrow$ 25.79±0.44 27.68±0.77 25.11±1.04	Disj $A_{AUC} \uparrow$ 41.51 ± 0.76 43.20 ± 0.31 38.28 ± 0.38	Imagel oint $A_{last} \uparrow$ 30.87 ± 0.72 34.06 ± 0.50 33.12 ± 0.73	Net-200 Gaussian- $A_{AUC} \uparrow$ 32.39 ± 0.36 35.22 ± 0.26 32.17 ± 0.44	Scheduled $A_{last} \uparrow$ 33.09 ± 0.37 37.88 ± 0.97 33.85 ± 0.93
Methods ER DER++ ER-MIR SCR	Disj $A_{AUC} \uparrow$ 37.43 ± 1.05 38.05 ± 1.07 37.81 ± 1.06 34.65 ± 1.08	TinyIm joint $A_{last} \uparrow$ 27.47±0.63 25.41±0.50 26.72±0.86 22.18±0.32	ageNet Gaussian- A _{AUC} ↑ 26.37±0.89 31.04±0.67 26.22±0.69 25.86±0.94	Scheduled $A_{last} \uparrow$ 25.79±0.44 27.68±0.77 25.11±1.04 22.54±0.59	Disj $A_{AUC} \uparrow$ 41.51 ± 0.76 43.20 ± 0.31 38.28 ± 0.38 41.90 ± 0.40	Imagel oint $A_{last} \uparrow$ 30.87 ± 0.72 34.06 ± 0.50 33.12 ± 0.73 28.92 ± 0.40	Net-200 Gaussian- $A_{AUC} \uparrow$ 32.39 ± 0.36 35.22 ± 0.26 32.17 ± 0.44 33.24 ± 0.32	Scheduled $A_{last} \uparrow$ 33.09 ± 0.37 37.88 ± 0.97 33.85 ± 0.93 30.98 ± 0.28
Methods ER DER++ ER-MIR SCR EWC	Disj $A_{AUC} \uparrow$ 37.43 ± 1.05 38.05 ± 1.07 37.81 ± 1.06 34.65 ± 1.08 37.95 ± 0.93	TinyIm ioint $A_{last} \uparrow$ 27.47±0.63 25.41±0.50 26.72±0.86 22.18±0.32 27.50±0.80	ageNet Gaussian- A _{AUC} ↑ 26.37±0.89 31.04±0.67 26.22±0.69 25.86±0.94 25.29±0.81	Scheduled $A_{last} \uparrow$ 25.79±0.44 27.68±0.77 25.11±1.04 22.54±0.59 26.06±0.52	Disj $A_{AUC} \uparrow$ 41.51 ± 0.76 43.20 ± 0.31 38.28 ± 0.38 41.90 ± 0.40 41.84 ± 0.64	Imagel oint $A_{last} \uparrow$ 30.87 ± 0.72 34.06 ± 0.50 33.12 ± 0.73 28.92 ± 0.40 31.57 ± 0.80	Net-200 Gaussian- $A_{AUC} \uparrow$ 32.39 \pm 0.36 35.22 \pm 0.26 32.17 \pm 0.44 33.24 \pm 0.32 30.71 \pm 0.27	Scheduled $A_{last} \uparrow$ 33.09 ± 0.37 37.88 ± 0.97 33.85 ± 0.93 30.98 ± 0.28 33.33 ± 0.98
Methods ER DER++ ER-MIR SCR EWC REMIND	Disj $A_{AUC} \uparrow$ 37.43 ± 1.05 38.05 ± 1.07 37.81 ± 1.06 34.65 ± 1.08 37.95 ± 0.93 28.37 ± 0.13	TinyIm $A_{last} \uparrow$ 27.47±0.63 25.41±0.50 26.72±0.86 22.18±0.32 27.50±0.80 27.68±0.45	ageNet Gaussian- A _{AUC} ↑ 26.37±0.89 31.04±0.67 26.22±0.69 25.86±0.94 25.29±0.81 10.19±0.60	Scheduled $A_{last} \uparrow$ 25.79±0.44 27.68±0.77 25.11±1.04 22.54±0.59 26.06±0.52 14.90±1.49	Disj $A_{AUC} \uparrow$ 41.51 ± 0.76 43.20 ± 0.31 38.28 ± 0.38 41.90 ± 0.40 41.84 ± 0.64 39.25 ± 0.93	Imagel oint $A_{last} \uparrow$ 30.87 ± 0.72 34.06 ± 0.50 33.12 ± 0.73 28.92 ± 0.40 31.57 ± 0.80 31.98 ± 0.84	Net-200 Gaussian- $A_{AUC} \uparrow$ 32.39±0.36 35.22±0.26 32.17±0.44 33.24±0.32 30.71±0.27 30.23±0.62	Scheduled $A_{last} \uparrow$ 33.09 ± 0.37 37.88 ± 0.97 33.85 ± 0.93 30.98 ± 0.28 33.33 ± 0.98 33.98 ± 0.09
Methods ER DER++ ER-MIR SCR EWC REMIND X-DER	Disj $A_{AUC} \uparrow$ 37.43 ± 1.05 38.05 ± 1.07 37.81 ± 1.06 34.65 ± 1.08 37.95 ± 0.93 28.37 ± 0.13 35.15 ± 2.12	TinyIm joint $A_{last} \uparrow$ 27.47±0.63 25.41±0.50 26.72±0.86 22.18±0.32 27.50±0.80 27.68±0.45 26.67±0.52	ageNet Gaussian- A _{AUC} ↑ 26.37±0.89 31.04±0.67 26.22±0.69 25.86±0.94 25.29±0.81 10.19±0.60 29.71±0.86	Scheduled $A_{last} \uparrow$ 25.79±0.44 27.68±0.77 25.11±1.04 22.54±0.59 26.06±0.52 14.90±1.49 28.10±0.50	Disj $A_{AUC} \uparrow$ 41.51 ± 0.76 43.20 ± 0.31 38.28 ± 0.38 41.90 ± 0.40 41.84 ± 0.64 39.25 ± 0.93 43.21 ± 0.47	Imagel oint $A_{last} \uparrow$ 30.87 ± 0.72 34.06 ± 0.50 33.12 ± 0.73 28.92 ± 0.40 31.57 ± 0.80 31.98 ± 0.84 33.84 ± 0.98	Net-200 Gaussian- $A_{AUC} \uparrow$ 32.39±0.36 35.22±0.26 32.17±0.44 33.24±0.32 30.71±0.27 30.23±0.62 36.31±0.17	Scheduled $A_{last} \uparrow$ 33.09 ± 0.37 37.88 ± 0.97 33.85 ± 0.93 30.98 ± 0.28 33.33 ± 0.98 33.98 ± 0.09 38.31 ± 0.55
Methods ER DER++ ER-MIR SCR EWC REMIND X-DER MEMO	Disj $A_{AUC} \uparrow$ 37.43 ± 1.05 38.05 ± 1.07 37.81 ± 1.06 34.65 ± 1.08 37.95 ± 0.93 28.37 ± 0.13 35.15 ± 2.12 27.36 ± 0.61	TinyIm $A_{last} \uparrow$ 27.47±0.63 25.41±0.50 26.72±0.86 22.18±0.32 27.50±0.80 27.68±0.45 26.67±0.52 27.57±0.52	ageNet Gaussian- A _{AUC} ↑ 26.37±0.89 31.04±0.67 26.22±0.69 25.86±0.94 25.29±0.81 10.19±0.60 29.71±0.86 10.82±1.23	Scheduled $A_{last} \uparrow$ 25.79±0.44 27.68±0.77 25.11±1.04 22.54±0.59 26.06±0.52 14.90±1.49 28.10±0.50 18.03±1.36	Disj $A_{AUC} \uparrow$ 41.51 ± 0.76 43.20 ± 0.31 38.28 ± 0.38 41.90 ± 0.40 41.84 ± 0.64 39.25 ± 0.93 43.21 ± 0.47 41.55 ± 0.23	Imagel oint $A_{last} \uparrow$ 30.87 ± 0.72 34.06 ± 0.50 33.12 ± 0.73 28.92 ± 0.40 31.57 ± 0.80 31.98 ± 0.84 33.84 ± 0.98 34.19 ± 1.47	Net-200 Gaussian- $A_{AUC} \uparrow$ 32.39 \pm 0.36 35.22 \pm 0.26 32.17 \pm 0.44 33.24 \pm 0.32 30.71 \pm 0.27 30.23 \pm 0.62 36.31 \pm 0.17 32.54 \pm 0.39	Scheduled $A_{last} \uparrow$ 33.09±0.37 37.88±0.97 33.85±0.93 30.98±0.28 33.33±0.98 33.98±0.09 38.31±0.55 36.11±1.06

Thanks