

FedES: Federated Early-Stopping for Hindering Memorizing Heterogeneous Label Noise

Bixiao Zeng^{1,2}, Xiaodong Yang¹, Yiqiang Chen*^{1,2,3}, Zhiqi Shen⁴, Hanchao Yu⁵ and Yingwei Zhang¹

¹Beijing Key Laboratory of Mobile Computing and Pervasive Device, Institute of Computing Technology, Chinese Academy of Sciences

²University of Chinese Academy of Sciences

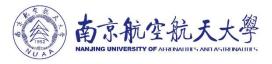
³Peng Cheng Laboratory

⁴Nanyang Technological University

⁵Bureau of Frontier Sciences and Education, Chinese Academy of Sciences {zengbixiao19b, yangxiaodong, yqchen}@ict.ac.cn, zqshen@ntu.edu.sg, {yuhanchao, zhangyingwei}@ict.ac.cn

IJCAI 2024

Introduction



- Existing **federated noisy label learning (FNLL)** addresses noise heterogeneity by distinguishing noisy clients from clean ones.
- 1) discarding clients
- loss of valuable information / noise residue
- 2) detect noisy clients, employ de-noise strategies(pseudo-labeling, knowledge distillation)
- still treat clients as either noisy or clean
- limited exploration

$$\widetilde{\mathcal{D}_k^n} = \underset{\substack{\tilde{\mathcal{D}} \subseteq \mathcal{D}_k^n \\ |\tilde{\mathcal{D}}| = \pi \cdot |\mathcal{D}_k^n|}}{\operatorname{arg\,max}} \ L_{CE}(\tilde{\mathcal{D}}; f_G^{(t)}); \qquad \widetilde{\mathcal{D}_k^n}' = \{(x, y) \in \widetilde{\mathcal{D}_k^n} | \max(f_G^{(t)}(x)) \ge \theta\};$$

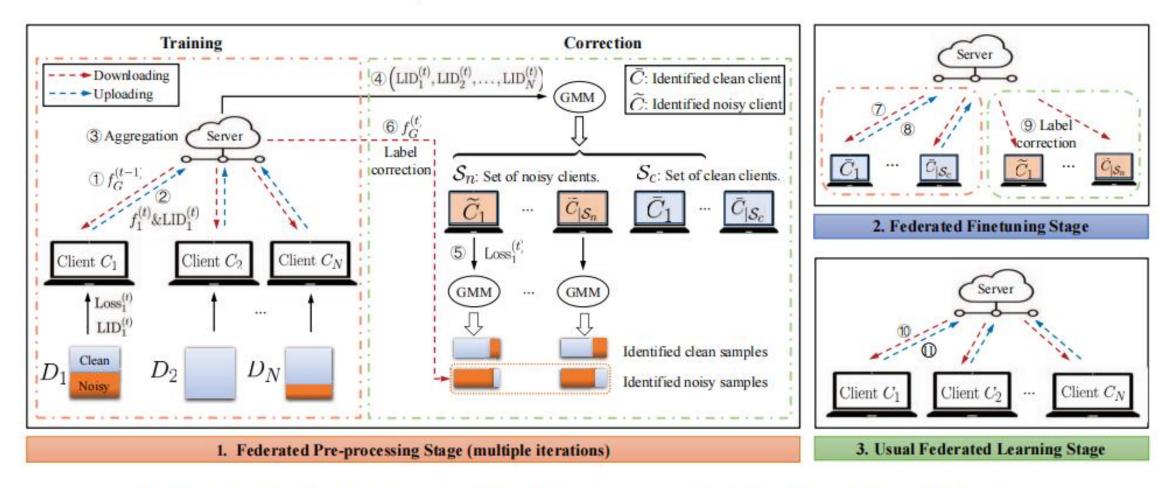


Figure 1. An overview of FedCorr, organized into three stages. Algorithm steps are numbered accordingly.

$$d(i) = \min_{j \in S_c} ||w_i - w_j||$$

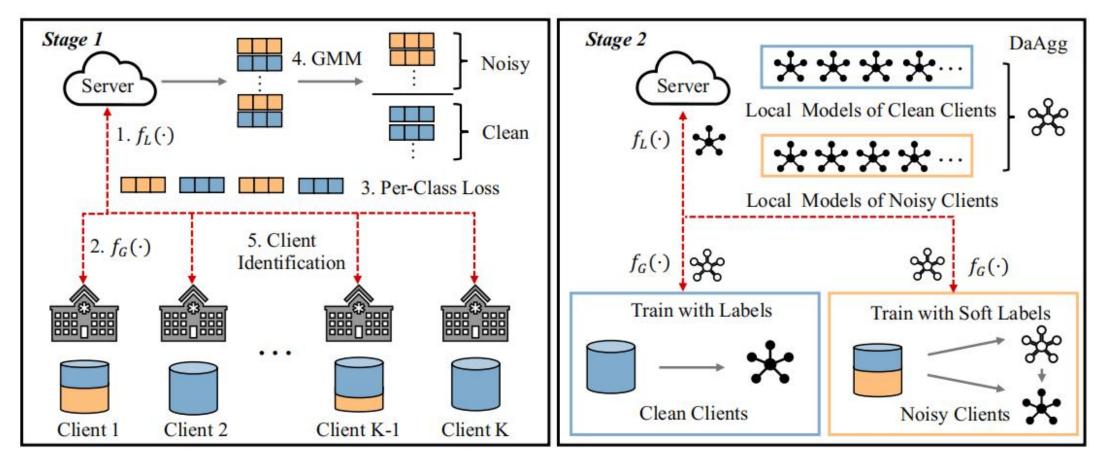


Figure 2: Overview of the proposed two-stage framework FedNoRo.

$$w_g = \sum_{i=1}^K \frac{N_i e^{-D(i)}}{\sum_{i=1}^K N_j e^{-D(j)}} w_i \qquad y_G = \operatorname{softmax}(\frac{f_G(x)}{T}) \qquad \mathcal{L} = \lambda \mathcal{L}_{KL}(y_p, y_G) + (1 - \lambda) \mathcal{L}_{CE}(y_p, \overline{y})$$

FedDiv
AAAI 2024

$$\begin{aligned} \mathbf{p}(\text{"clean"}|x, y; \theta^{(t)}) &= P(z = 1 | x, y; \theta^{(t)}) \\ \gamma_{kg}(x, y; \theta_k^{(t)}) &= P(z = g | x, y; \theta_k^{(t)}) \\ &= \frac{P(\ell(x, y; \theta_k^{(t)}) | z = g) P(z = g)}{\sum_{g'=1}^2 P(\ell(x, y; \theta_k^{(t)}) | z = g') P(z = g')} \end{aligned}$$

$$\mathcal{D}_{k}^{\text{clean}} \leftarrow \{(x, y) | \mathbf{p}(\text{"clean"}|x, y; \theta_{k}^{(t)}) \ge 0.5, \forall (x, y) \in \mathcal{D}_{k} \}$$

$$\mathcal{D}_{k}^{\text{noisy}} \leftarrow \{(x, y) | \mathbf{p}(\text{"clean"}|x, y; \theta_{k}^{(t)}) < 0.5, \forall (x, y) \in \mathcal{D}_{k} \}$$

$$\mathcal{D}_{k}^{\text{relab}} \leftarrow \{(x, \hat{y}) | \max(\mathbf{p}(x; \theta^{(t)})) \ge \zeta, \forall x \in \mathcal{D}_{k}^{\text{noisy}} \}$$

南京航空航天大學

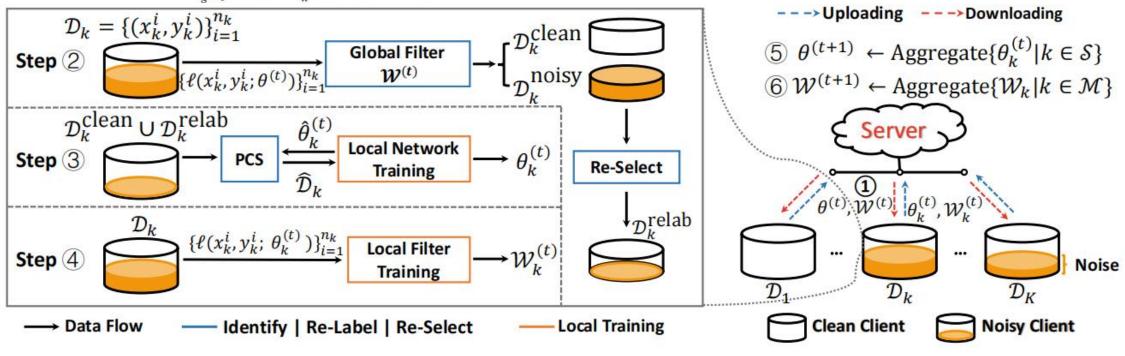
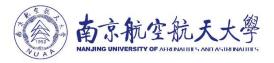


Figure 2: An overview of the training procedure proposed by FedDiv. In this work, the parameters of a local neural model and a local noise filter are simultaneously learned on each client during the local training sessions, while both types of parameters are aggregated on the server.

$$F(x) \leftarrow f(x; \hat{\theta}_k^{(t)}) - \xi \log(\hat{p}_k) \qquad \hat{p}_k^{(t)} \leftarrow m\hat{p}_k + (1 - m)\frac{1}{n_k} \sum_{x \in \mathcal{D}_k} \mathbf{p}(x; \theta_k^{(t)}) \qquad \mathcal{L}_{final} = \mathcal{L}_{mix} + \eta \mathcal{L}_{reg}$$

$$\tilde{y}(x) = \arg \max F(x) \qquad \mathcal{D}_k^{resel} \leftarrow \{(x, y) | \hat{y}(x) = \tilde{y}(x), \forall (x, y) \in \mathcal{D}_k^{clean} \cup \mathcal{D}_k^{relab}\}$$

Introduction



- early-stopping
- explores the dynamic optimization policies during the training of deep neural networks (DNNs)
- memorization effect that **DNNs tend to frst memorize clean labels and then** memorize noisy ones
- Extensive experiments have shown a positive correlation between the amount of clean data and critical parameters, suggesting more clean data need more critical model parameters to memorize them
- stopping training at a certain time point / on a non-critical segment of DNNs / stopping the training of noise-sensitive layers / stopping the training of non-critical parameters
- these methods all require some prior knowledge(noise rate of training data)
- In federated learning, noise rates **remain unknown** and exhibit variations among heterogeneous clients

Introduction

- We present a general noise-robust framework, FedES, to handle noise heterogeneity where clients have varying noise rates instead of a binary noisy-vs-clean problem.
- We present a general noise-generation approach for modeling federated label noise, incorporating varying noise rates for clients with a continuous spectrum.
- We estimate each client's noise rate via a signed EMD based on the local and global gradient, without requiring additional information from clients.
- We demonstrate that FedES outperforms state-of-the-art FL methods on both varying synthetic federated label noise and real-world label noise.

Method——FedES

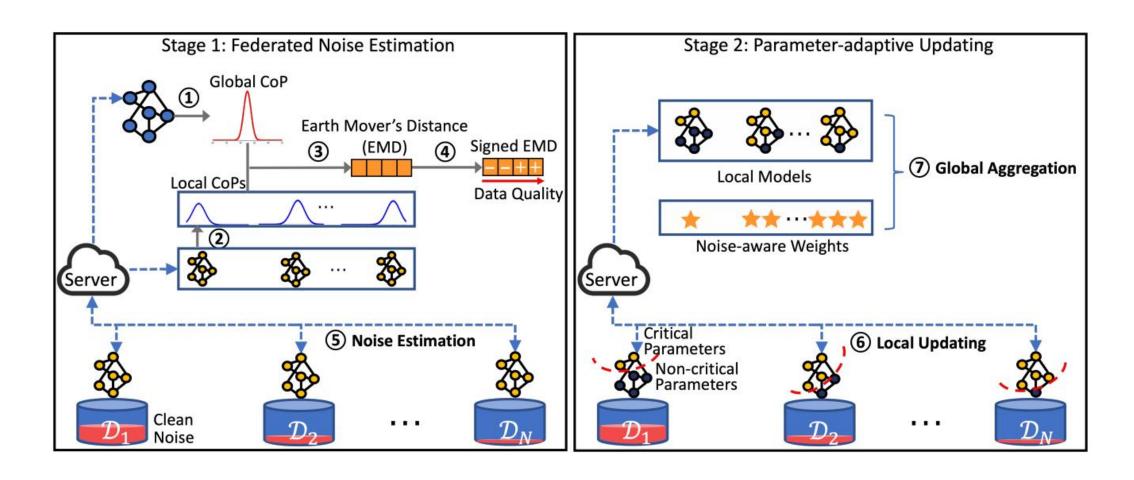


Figure 1: Overview of the proposed two-stage framework FedES.

Method

(CoP)
$$g_i = |\nabla l(\mathbf{w}_i) \times \mathbf{w}_i|, i \in [m]$$

FedAvg Updating

$$W_n(t+1) = W(t) - \eta \nabla L_n(W(t))$$

$$W(t+1) = \sum_{n=1}^{N} \frac{|\mathbb{D}_n|}{|\mathbb{D}|} W_n(t+1)$$

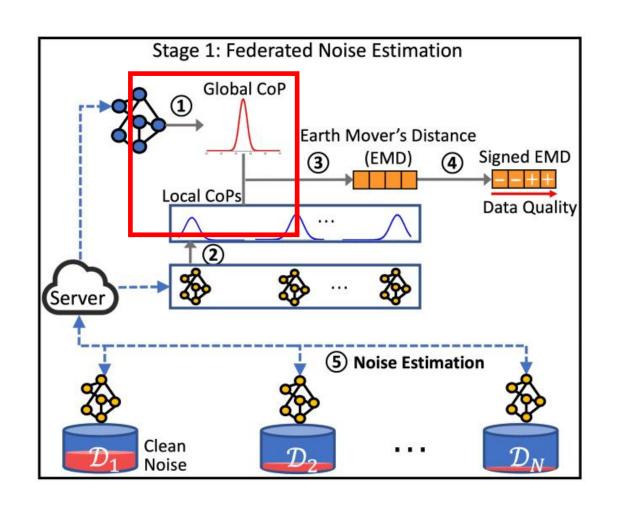
$$= \mathcal{W}(t) - \eta \sum_{n=0}^{N} \frac{|\mathbb{D}_n|}{|\mathbb{D}|} \nabla L_n(\mathcal{W}(t))$$

global CoP

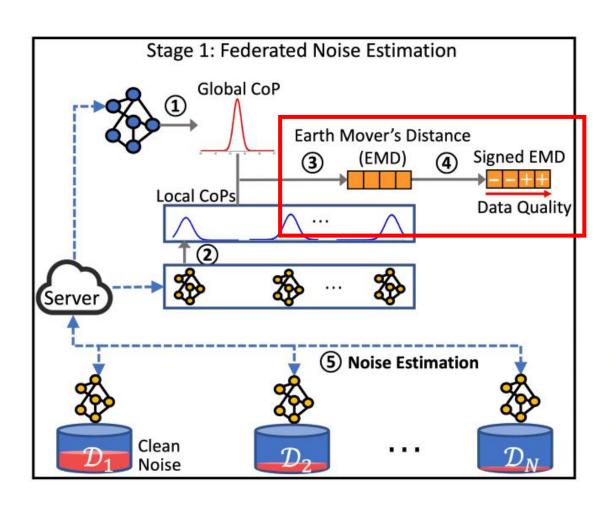
$$\mathbf{g}_s \leftarrow |(\mathcal{W}^{\text{pre}}(s_1+1) - \mathcal{W}^{\text{pre}}(s_1)) * \mathcal{W}^{\text{pre}}(s_1)|$$

local CoP

$$\mathbf{g}_n \leftarrow |(\mathcal{W}_n^{\text{pre}}(s_1+1) - \mathcal{W}^{\text{pre}}(s_1)) * \mathcal{W}^{\text{pre}}(s_1)|$$



Method



Earth Mover's Distance (EMD)

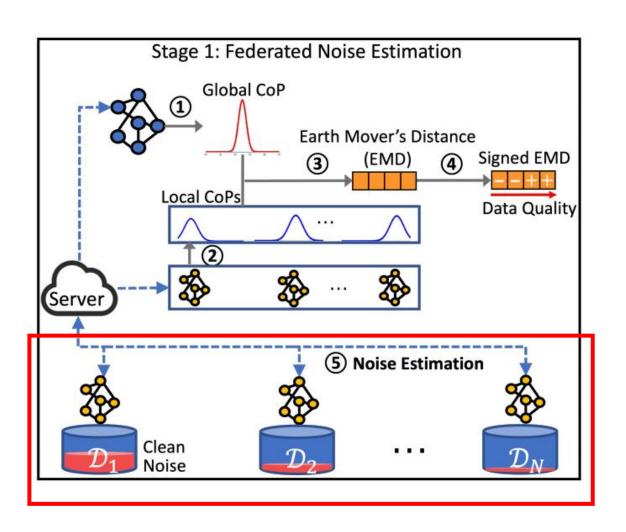
- Higher data quality is associated with a CoP distribution having many large values, and the shape of distributions with varying noise rates differs from the global distribution.
- The distance concerning the CoP of a low-dataquality client may be **the same as** that of a high-dataquality client (a horizontally fipped version of a low-data-quality client).

Signed EMD

$$G = [\mathbf{g_1}, ..., \mathbf{g}_N, \mathbf{g}_s] \xrightarrow{\mathbf{GMM}} [\mu_1, ...\mu_N, \mu_{N+1}]$$

$$d_n = \operatorname{sgn} \left(\boldsymbol{\mu}_n - \boldsymbol{\mu}_{N+1} \right) \cdot \operatorname{EMD} \left(\mathbf{g}_n, \mathbf{g}_s \right)$$
$$= \operatorname{sgn} \left(\boldsymbol{\mu}_n - \boldsymbol{\mu}_{N+1} \right) \cdot \inf_{\pi \in \Pi(\mathbf{g}_n, \mathbf{g}_s)} \mathbb{E}_{(x,y) \sim \pi} [d(x,y)]$$

$$sgn(x) = -[x < 0] + [x > 0]$$



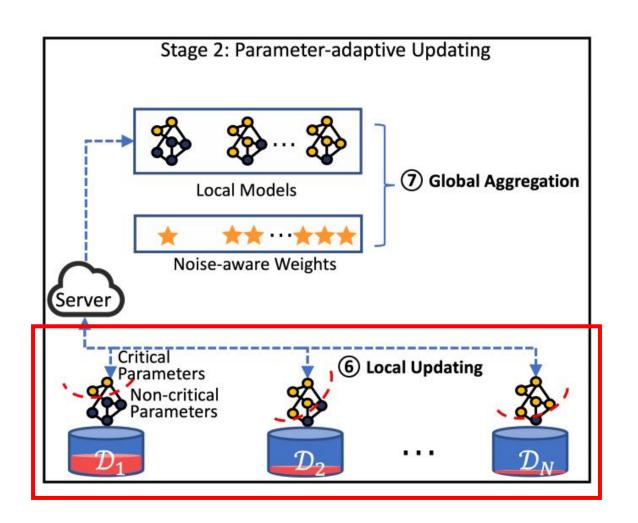
Data quality

$$\tau_n = \frac{|y_n^i \neq y_n^{*i}|}{|\mathbb{D}_n|}, i \in [1, |\mathbb{D}_n|]$$

$$q_n = 1 - \tau_n$$

$$\rho_n = \frac{d_n - \min(\boldsymbol{d})}{\max(\boldsymbol{d}) - \min(\boldsymbol{d})},$$

Method



Parameter-adaptive Updating

$$m_n^c = \rho_n * m$$

$$\mathbf{g}_n^{\downarrow} = \left[g_n^{\downarrow}[1], \dots, g_n^{\downarrow}[m_n^c], \dots, g_n^{\downarrow}[m] \right],$$
$$g_n^{\downarrow}[1] \ge \dots \ge g_n^{\downarrow}[m_n^c] \ge \dots \ge g_n^{\downarrow}[m]$$

$$\mathcal{M}_n[i] = \begin{cases} 1, & \text{if } g_n^{\downarrow}[1] \ge g[i] \ge g_n^{\downarrow}[m_n^c] \\ 0, & \text{otherwise} \end{cases}$$

Selective gradient decay (SeGD)

$$W_n(t'+1) \leftarrow W_n(t') - \eta \rho_n \mathcal{M}_n \odot \nabla L(W_n(t'))$$

Noise-aware aggregation (NaAgg)

$$\mathcal{W}(t+1) = \sum_{n=1}^{N} \frac{|\mathbb{D}_n| \, \rho_n}{\sum_k |\mathbb{D}_k| \, \rho_k} \mathcal{W}_n(t+1)$$

Experiments

$\tau_n = \min(\max(\tau, 0), 1), \tau \sim \mathcal{N}(\mu, \sigma)$

		IID				Non-IID			
Category	Method	Symmetric		Asymmetric		Symmetric		Asymmetric	
		$\mu = 0.3$	$\mu = 0.5$						
Baseline	FedAvg	78.32±0.36	55.59±0.72	81.62±0.32	50.28±0.03	58.75±0.06	32.56 ± 0.82	63.06±0.66	32.52±0.82
Binary De-noise	S-FedAvg	85.42±0.28	63.72 ± 0.95	88.94 ± 0.62	58.82 ± 0.04	66.55 ± 0.17	41.27 ± 0.53	70.62 ± 0.52	40.72 ± 0.98
	Fair	83.56 ± 0.08	64.35 ± 0.83	87.60 ± 0.22	58.35 ± 0.76	64.04 ± 0.58	41.27 ± 0.18	68.32 ± 0.97	40.64 ± 0.97
	FedNoRo	87.55±0.29	71.00 ± 0.11	83.79 ± 0.14	48.16 ± 0.38	59.36 ± 0.61	35.36 ± 0.27	53.97±0.76	47.62 ± 0.68
General De-noise	Fed-SCE	90.19 ± 0.21	83.00±0.34	84.77±0.10	52.50±0.67	83.66±0.38	65.33 ± 0.56	70.92 ± 0.04	23.63 ± 0.30
	Fed-Mixup	88.72±0.15	74.19 ± 0.69	87.77±0.20	54.61±0.52	70.72 ± 0.48	40.07 ± 0.15	66.71 ± 0.17	31.56 ± 0.83
	Fed-Coteaching	85.38±0.17	73.67 ± 0.20	87.15 ± 0.09	58.20±0.59	76.64 ± 0.73	54.77 ± 0.12	72.25 ± 0.78	22.26 ± 0.71
Ours	FedES	93.09±0.93	85.40±0.34	90.79 ± 0.91	60.34 ± 0.36	85.74 ± 0.99	68.11 ± 0.48	74.54 ± 0.65	50.59 ± 0.41

Table 1: Test Accuracy (%) comparison results on CIFAR-10 datasets under varying synthetic federated label noise

		IID			Non-IID				
Category	Method	Symmetric		Asymmetric		Symmetric		Asymmetric	
		$\mu = 0.3$	$\mu = 0.5$						
Baseline	FedAvg	46.22±0.60	30.94 ± 0.87	53.01±0.80	31.66±0.63	42.11±0.36	25.84 ± 0.12	51.72±0.83	33.04±0.01
Binary De-noise	S-FedAvg	53.29±0.00	39.78 ± 0.44	60.33 ± 0.88	40.56 ± 0.53	49.60 ± 0.45	34.22 ± 0.24	58.74 ± 0.06	41.07±0.36
	Fair	51.71 ± 0.19	39.92 ± 0.64	58.54 ± 0.43	39.83 ± 0.05	47.11 ± 0.72	34.44 ± 0.04	56.99±0.79	41.45 ± 0.91
	FedNoRo	59.76±0.38	47.14 ± 0.40	61.13 ± 0.13	33.22 ± 0.75	42.73 ± 0.64	30.40 ± 0.15	50.43 ± 0.06	44.97 ± 0.29
General De-noise	Fed-SCE	57.83±0.51	48.01 ± 0.74	58.05±0.36	33.01 ± 0.43	63.17±0.27	50.20 ± 0.45	57.36±0.11	34.63 ± 0.23
	Fed-Mixup	60.14 ± 0.73	47.05 ± 0.56	62.16 ± 0.59	37.08 ± 0.24	55.86 ± 0.12	40.86 ± 0.18	58.27 ± 0.42	37.57 ± 0.29
	Fed-Coteaching	59.22 ± 0.45	44.27 ± 0.33	58.98 ± 0.50	34.64 ± 0.98	58.45 ± 0.02	42.72 ± 0.43	60.59 ± 0.35	39.03 ± 0.16
Ours	FedES	63.13±0.32	50.59 ± 0.68	65.11 ± 0.09	39.58 ± 0.37	65.51 ± 0.75	52.96±0.76	62.72 ± 0.89	47.05 ± 0.11

Table 2: Test Accuracy (%) comparison results on CIFAR-100 datasets under varying synthetic federated label noise

Experiments

Baseline	Binary De-noise			2	Ours		
FedAvg	S-FedAvg	Fair	FedNoRo	Fed-Mixup	Fed-Coteaching	Fed-SCE	Fed-ES
70.52 ± 0.23	71.33 ± 0.04	71.25 ± 0.50	71.05 ± 0.14	72.61 ± 0.27	71.35 ± 0.23	72.57 ± 0.12	73.03 ± 0.14

Table 3: Test Accuracy (%) comparison results on Clothing 1M datasets under real-world label noise

Indicator	Mean	EMD	Sign	CIFAR-10	CIFAR-100
\hat{q}_n	X	X	X	0.07	0.13
$P_{\phi}[n]$	X	×	×	0.05	0.11
ρ_n	1	X	X	0.03	0.09
ρ_n	X	1	×	0.02	0.05
$ ho_n$	X	/	✓	0.01	0.02

Table 4: MSE comparison results of the first stage ablation study in FedES. Settings: CIFAR-10 dataset ($\mu=0.5$, noise type: asymmetric, data partition: Non-IID) and CIFAR-100 dataset ($\mu=0.5$ noise type: asymmetric, data partition: Non-IID)

CS	SeGD	NaAgg	CIFAR-10	CIFAR-100
X	X	X	58.75 ± 0.06	53.01 ± 0.80
1	X	X	67.91 ± 0.15	59.97 ± 0.29
X	1	X	76.15 ± 0.82	62.76 ± 0.64
X	X	1	74.26 ± 0.97	61.17 ± 0.18
X	1	/	85.74 ± 0.99	65.11 ± 0.09

Table 5: Test Accuracy comparison results of the second stage ablation study in FedES. Settings: CIFAR-10 dataset ($\mu=0.3$, noise type: symmetric, data partition: Non-IID) and CIFAR-100 dataset ($\mu=0.3$, noise type: asymmetric, data partition: IID)

Experiments



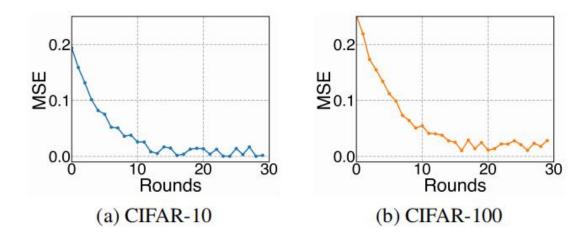


Figure 3: Ablation study of s_1 for pre-training. Settings: CIFAR-10 dataset ($\mu=0.5$, noise type: asymmetric, data partition: Non-IID) and CIFAR-100 dataset ($\mu=0.3$, noise type: asymmetric, data partition: Non-IID)

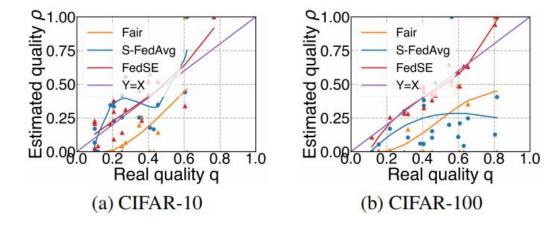
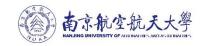


Figure 2: Comparison on data quality estimation. Settings: CIFAR-10 dataset ($\mu=0.5$, noise type: asymmetric, data partition: Non-IID) and CIFAR-100 dataset ($\mu=0.5$ noise type: asymmetric, data partition: Non-IID)



Thanks