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(c) Open set recognition/classification prob-
lem.

novel-category discovery (NCD)

Unlabelled data of novel categories

Clustering assignment

Figure 1. Learning to discover novel visual categories via deep
transfer clustering. We first train a model with labelled images
(e.g., cat and dog). The model is then applied to images of un-
labelled novel categories (e.g., bird and monkey), which transfers
the knowledge learned from the labelled images to the unlabelled
images. With such transferred knowledge, our model can then si-
multaneously learn a feature representation and the clustering as-
signment for the unlabelled images of novel categories.
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Table 1: Clustering performance on DomainNet benchmark. We use Real as the known domain
and each of the remaining domains as the unknown domain. We report the average All / Old / New Table 3: Component-wise ablation on Real —

o - .
accuracy across all stages for both domains. Painting.
M : Real —+ Painting Real —» Sketch Real — Quickdraw Real —» Clipart Real — Infograph
ethods — - — . .
Real Painting Real Sketch Real Quickdraw Real Clipart Real Infograph Comp()nents Real Pa]ntlng

Al Old New | Al Old New | Al Old New | Al Old New | Al Old New | Al Old New | Al Old New | Al Old New | Al Old New | Al Old New
GCD 513 672 454 | 274 267 28.1 | 523 657 417 | 92 145 101 | 387 562 296 | 50 47 58 | 467 657 401 | 145 212 101 | 398 553 324 | 81 98 64 HCS SAM IKT All Old New All Old New
SimGCD 484 639 413 | 226 224 235 | 485 602 365 | 72 113 92 | 324 503 235 |42 40 51 [402 588 335|103 188 82 | 336 492 278 | 67 18 52
SPTNet 498 645 425 | 241 235 243 | 499 623 378 | 79 117 96 | 348 526 248 | 49 46 55 431 603 359 | 116 193 89 [ 359 514 208 | 72 80 59 X X X 546 68.7 46.5 287 28.1 279
RLCD 508 662 44.1 | 255 246 258 | 512 648 400 | 84 121 100 | 361 540 257 | 48 47 53 [452 621 369 | 135 209 98 | 371 532 325 | 84 89 68
G&M 471 623 412 | 263 255 262 | 509 634 423 | 109 151 105 | 341 502 273 | 43 41 52 | 403 611 342 | 114 192 88 | 324 so1 276 | 75 92 55 v v X 58.1 729 499 | 35.0 359 325
Happy 50.6 665 447 | 280 270 289 | 520 650 412 | 112 156 107 | 356 514 289 | 46 45 52 [ 456 624 371 [ 120 196 90 | 342 505 280 79 94 56
PACGCD || 554 703 481 | 3001 308 302 | 551 707 466 | 123 161 112 [ 436 604 342 |51 50 60 | 522 703 446 | 178 245 123 [ 452 613 381 | 90 118 7.1 v X v 56.9 70.2 527 | 332 318 352
DEAN 560 717 479 | 328 344 315 | 567 715 476 | 129 168 112 | 440 610 351 | 53 51 62 | 551 727 475 | 203 267 150 | 467 623 408 | 95 125 79
PromptCCD || 565 712 503 | 315 321 312 | 574 736 486 | 134 177 121 | 452 623 367 | 58 51 65 | 541 712 467 | 198 261 144 471 631 402 | 92 122 78 v v v 60.9 74.1 551 | 392 390 38.2
VBCGCD || 573 710 524 | 324 336 325 | 569 731 488 [ 139 181 129 | 4701 621 381 | 60 49 68 | 554 720 475 | 196 258 142 | 483 639 419 | 94 124 80
PRISM 609 741 551|392 390 382 | 601 734 510 | 169 200 159 | 540 740 492 |71 65 74 [ 580 723 512|240 304 191 | 601 738 531 | 109 141 98

Table 2: Clustering performance on SSB-C benchmarks. Each dataset contains both Original and
Corrupted settings, and we report the average All / Old / New accuracy across all stages for both

domains.

CUB-C Stanford Cars-C FGVC-Aircraft-C i y : :
Methods Original o Original & i Original o Table 4: Co‘mgarlson of separation strategies on

All Old New | Al Old New | Al Old New | Al Old New | Al Old New | All Old New Real — Painting.

GCD 294 477 234 | 268 459 201 | 264 561 215 | 223 431 112 | 27.7 336 249 | 288 414 288
SimGCD 266 445 210 | 234 424 177 | 231 525 189 | 193 397 98 |254 301 221|252 381 258
SPTNet 278 452 220 | 25.1 442 181 | 249 550 203 | 211 416 99 | 261 312 233|269 395 267 T Real Painting
RLCD 29.1 468 238 | 262 453 194 | 268 569 221 | 229 432 97 |27.8 323 242|273 407 28.1 ethods Al Lol Nyl Al Ol New
G&M 164 341 105 | 137 321 77 | 157 438 123 | 114 305 67 [205 248 179 | 216 327 223
Happy 220 394 169 | 198 384 142|219 487 189 | 181 370 132|243 279 213|248 356 257 origin image || 55.0 68.7 472 [ 29.6 289 283
PACGCD | 283 465 227 | 254 447 184 | 252 551 209 | 212 415 102 | 264 314 237 | 278 401 272
DEAN 289 471 230 | 263 462 182 | 261 581 194 | 221 412 129 | 281 328 289 | 201 401 303 entropy-based | 544 69.0 467 | 299 29.1 286
PromptCCD || 30.1 481 245 | 274 461 203 | 274 574 221 | 231 444 114|299 345 264 | 303 429 299 energy-based 55.8 699 48.1 | 306 295 299
VB-CGCD | 342 518 263 | 317 492 234|316 599 261|263 479 151 | 332 373 29.7 | 323 445 316
PRISM 493 649 442 440 609 37.0 | 369 60.0 291 | 333 565 23.5 | 40.1 489 40.1 | 364 461 341 = ST N2
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Gender SingerID Pitch Range Hours

Female Singer1 54-78(D#3,185.00Hz - F#5, 739.99Hz) 1.00
Singer2 53-76(F3,174.61Hz - E5, 659.25Hz) 0.36
Singer3 53-77(F3,174.61Hz - F5, 698.46Hz) 0.24
Singer4 49-73(C#3,138.59Hz - C#5, 554.37Hz) 0.62

Male Singer5 49-70(C#3,138.59Hz — A#4, 466.16Hz) 0.24
Singer6 43-69(G2,98.00Hz - A4, 440.00Hz) 1.26
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Figure 3: The distribution of phonemes, divided into Shengmu (top) and Yunmu (bottom).
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Table 2: Comparative experimental results obtained by the four models in terms of the used evaluation metrics.

Model MCD] FORMSE] DurAcct FoPcct MOST

GT - = - — 4.36+0.05 . . Vard L] P ]
FastSpeech2 7.41 24.76 0.838 0.9778 3.54+0.04 ® MCD SM;I-CePStral Distortion 'ﬁ"l\h“lE*
D s s o oo 7o H) : GRS S eSS
VISinger2 7.69 25.57 0.890 0.9133 3.861+0.04 27

Ours 7.28 21.23 0.895 0.9832 3.93+0.05 @ﬁg Rl&.

® F0RMSE (BSUABHRIRE) : WERS
MS5ELEMN FO (B8) ER

e 400 0 501020 250030 '{D ® DurAcc (Duration Accuracy' Hj‘l'ﬁ;ﬁﬁﬁ-%z) .
(@ G. (6) Ours. WEENRER/ ST SESLIE AR KA
w ﬁ WAt

400

: 200 ® FO0PCC (FO0 Pearson Correlation Coefficient,
e S EUNR/REMERREY)  EELEMATY FO %

(c) Fast Speech2 J (d) DiffSnger. | o 1?2)2\3?32?1;?5.350 e FESCH FO IERIREDR—

Figure 6: Visualization of the pitch contour and mel-spectrogram of GT and different models (one case study).
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