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Background
open-set recognition (OSR) novel-category discovery (NCD) Generalized Category Discovery（GCD）

属性 OSR（开放集识别） NCD（新类发现） GCD（广义新类发现）

核心任务目标 区分“已知类”与“未知类”，未知类拒识
（不分类） 在无标签数据中聚类出不同新类结构 在混合数据中，分类已知类+聚类新类

是否做新类分类 ❌ 不需要（未知类标记为“未知”） ✅ 聚类发现新类的类别结构 ✅ 聚类发现新类的类别结构

数据构成 有标签：仅已知类
无标签：测试阶段输入（已知类 + 未知类）

有标签：仅已知类
无标签：仅新类（无已知类）

有标签：仅已知类
无标签：混合（已知类 + 新类）

数据阶段特征 训练仅用已知类，
测试引入未知类

训练用已知类，
测试全为无标签新类

训练：已知类标签 + 混合无标签数据
推理：预测混合无标签数据的类别



Motivation

Ø不足之处
1、NCD/GCD（新类发现/广义新类发现）：
1）依赖静态数据集，要求同时获取标记与未标记数据；
2）未考虑开放环境的动态性，无法适配现实中的数据流场景。

2、Continual Category Discovery(CCD，持续新类发现)
1）各阶段数据来自单一固定域，与开放环境的实际情况不符，样本多为多源/跨域数据。
2)   新类别会伴随着域偏移（如设备、风格、光照变化）与已有类别同步出现。

Ø核心目标
1、分布偏移下保留已知类识别的能力
2、动态非平衡数据流持续发现新类别
3、规避传统的域适应方法的局限性（标签空间重叠假设、负迁移风险、缺乏未知类发现指导）

开放世界场景下，连续新类发现+域偏移



Methods



Methods
Ø  高频驱动的类别分离（High-frequency-driven Category Separation，HCS）

高频分量倾向于捕获域不变的全局语义（如结构），而低频分量则编码域相关的细节（如风格）。



Methods
Ø  高频驱动的类别分离（High-frequency-driven Category Separation，HCS）

1、使用离散傅里叶变换到频域

2、二元掩码（分离高低频）

3、高低频率分量获取

4、逆DFT恢复低高频图像的空间表示

5、基于特征，计算分数

6、GMM区分已知和未知类



Methods
Ø  稀疏对齐匹配（Sparse Assignment Matching ，SAM）

Optimal Transport（最优运输）：自动学习“无标签已知样本”与“已知类原型”之间的最佳匹配，从而在跨
域情况下恢复正确的类别对应关系。

Ø 不足之处
1）直接用线性规划解 OT：计算成本极高，难以实际落地；
2）熵正则化 OT：虽然提升了效率，但会得到过于密集的传输计划，导致样本与原型的匹配结果不准确。

提出稀疏对齐匹配方案，通过引入L2范数近邻项



Methods
Ø  稀疏对齐匹配（Sparse Assignment Matching ，SAM）

优化目标

约束集合

通过对偶化（Dual form）避免直接处理约束

更新运输计划



Methods
Ø  不变知识转移（Invariant Knowledge Transfer，IKT）

Ø 现有的不足
1）依赖语义关联的知识转移在域偏差下会被风格因素扭曲
2）现有方法缺乏对“域不变类别关联”的建模

通过建模并约束未知样本与已知原型之间的跨域关系保持一致，从而抵抗域偏移干扰，让模型依赖真正稳定
的语义结构完成类别发现。



Methods
Ø  不变知识转移（Invariant Knowledge Transfer，IKT）

1）用均值和反差表示低频风格

2）估计样本间统计量分布

3）高斯分布中采样受扰的低频数据
（模拟域偏移）

1）将未知样本低频替换为扰动后的低频

1、低频统计（style）的建模与扰动

2、构建转换的低频特征

3、未知样本与已知原型的关系建模

1）获得两种视图的特征

2）计算未知样本与每个已知类原型的相似度



Methods
Ø  不变知识转移（Invariant Knowledge Transfer，IKT）

4、Plackett–Luce model：用全排序建模关系

5、强制两视图的排序分布一致（不变知识）

通过随机扰动未知样本的风格构造不同视图，再用 Plackett–Luce 排序模型捕获未知样本与已知类原型的全
局关系，并强制两视图的排序分布一致，从而让模型学习到跨域稳定的语义关联。



Experiments

Ø  数据集

1、SSB-C：扩展了语义偏移基准（SSB），包含 9 种破坏类型（5 个严重程度等级）与 3 个细粒度数据集。
SSB作为已知类，SSB-C作为未知类。
2、DomainNet：含6个多样化领域的大规模数据集，涵盖数百个类别且领域差距显著。Real作为已知类，其他
类别作为未知类。

Ø  实现细节

采用ViT-B/16作为骨干网络，每个阶段仅微调最后一个 Transformer 块：采用 SGD 优化器训练 30 个 epoch，
批次大小设为 128；初始学习率为 0.1，通过余弦退火衰减至 1×10⁻⁴，权重衰减固定为 5×10⁻⁵

Ø  评估方案

持续聚类准确率（continual clustering accuracy，cACC）

ACC定义

g*：最优置换映射（将预测聚类匹配到对应的真实类别）



Experiments
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Methods

Ø 预处理 Ø 数据集组成（音调、音素、持续时间）

Ø 对齐步骤（音素处理）
1、歌词转换为音节。根据声母和韵母的规则将获得的音节拆分为音素。
2、通过MFA(Montreal forced aligner model，蒙特利尔强制对准器模型)将音素
和录音对齐，结果存在TextGrid。
3、使用Praat注释软件手动校准音素与音节边界。
4、使用Parselmouth获取音调，对音调做后处理。
5、拖音处理

Ø 转录步骤（音调处理）
1、音调提取
2、量化音调，可以得到音符与MIDI文件的对应编号。
3、动态拓展（前后各加半拍）



Methods



Methods

双分支结构，分别处理全局/局部信息

Ø pitch层面

用Encoder输出做条件，让音高更贴合文本

Ø duration层面 

Ø  梅尔谱层面



Experiments

l MCD（Mel-Cepstral Distortion，梅尔倒谱失
真）：衡量生成音频的音色和真实音频的音
色有多接近

l  F0 RMSE（基频均方根误差）：对比生成音
频与真实音频的 F0（音高） 差异

l  DurAcc（Duration Accuracy，时长准确率）：
测量生成的音素/音节时长与真实唱法时长的
吻合程度

l  F0 PCC（F0 Pearson Correlation Coefficient，
基频皮尔逊相关系数）：衡量生成的 F0 曲线
和真实的 F0 曲线形状是否一致



Idea

数据：歌词、音频（清唱）

预处理（对齐）：
1、文字转拼音
2、通过MFA对齐拼音和音频
3、通过Praat精细标注
4、使用Parselmouth获取音调F0,并对其优化（可选）

戏曲合成步骤
1、声学建模（核心）
2、声码器生成（目前主流：HiFi-GAN/BigVGAN）

可做的方向：
1、纯戏曲数据+戏曲模型（数据体量：4-5h）
2、方言数据+戏曲数据+戏曲模型，从带有方言的戏曲角度切入



Thanks


