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Background

指令调整已经成为将多模态大型语言模型(mllm)与人类意图对齐的基础,使gpt - 4o、Gemini 和
LLaVA等模型能够处理各种下游任务,包括视觉问答、图像文本检索和Grounding。虽然大规模视觉指
令数据集(例如,LLaVA-665K)实现了令人印象深刻的性能,但它们引入了大量冗余、高计算成本和优化
效率低下。

最近的工作, 表明仔细选择一小部分高质量指令可以显著降低计算成本,同时保持模型性能。 为
了缓解这些挑战,已经提出了数据选择方法来识别可以增强大型语言模型(llm)性能的高质量指令数据。
现有的数据选择方法旨在通过选择重要和多样化的子集来缓解这一问题,但它们通常存在两个关键缺
点: 处理整个数据集的高计算开销以及由于重要性和多样性的单独处理而导致的次优数据选择。



Background

以前最先进的方法(TIVE和ICONS)将重要性和多样性视为解耦且独立的组件,
在训练阶段使用整个数据。我们的COIDO在耦合和互反优化中集成了重要性和多样
性,通过仅利用整个数据集的一小部分p%(p≪100)进行模型训练,并且在选择阶段没
有任何专门的算法,实现了卓越的数据选择。



Background

COIDO,一个新的双目标框架,共同优化数据的重要性和多样性,以克服这些挑战。不像现有的方法需要对整个数据
集进行昂贵的评估, COIDO使用了一个轻量级的插件评分器。

这个计分器只在一个小的随机数据子集上进行训练,以学习候选集的分布,大大降低了计算需求。通过利用基于均
方差不确定性的公式,COIDO在训练过程中有效地平衡了重要性和多样性,能够推断所有样本的COIDO分数。这种统一
的评分方法允许直接对最有价值的子集进行排名和选择,完全避免了对专门算法的需要。



Method

COIDO框架通过仅利用一小部分p%(例如,20%)的随机样本进行训练, 有效地选择高质量的子集。首先从原始数据
集中提取多模态特征和评分指标 (评估文本、图像、图像-文本对齐)。这些特征用于两个目的:(1)训练轻量级的COIDO 
Scorer来评估一次通过的数据重要性和多样性  (2)聚类以获得每个数据样本的类分配,这将随后用于建模多样性损失。



Method

重要性与多样性的耦合
优化 (Coupled Optimization)



Method

基于同方差不确定性的自动加权：为了解决多目标优化中权重超参
数难以调节的问题，作者使用任务特定不确定性下的最大似然估计(MLE)
框架来表述这个问题。每个损失项被视为概率模型的负对数似然,其中可
学习参数捕获优化每个目标时的固有不确定性或噪声。这个概念被称为
均方差不确定性,它假设不确定性对于给定目标是恒定的,但在不同目标之
间是不同的,这与本文的多模态场景很好地一致。



Method



Experiments

本文在 LLaVA-1.5-7B 模型及 LLaVA-665K 视觉指令调优数据集上进行了广泛验证，并在 10 个主流多模态基准
（包括 VQAv2, GQA, MMBench 等）上进行了测试。
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Background

遥感图像改变了人类观察和认识地球的方式。它使我们能够监测土地覆盖/利用类型,有效应对自然灾害(如
火 灾、地震、洪水),深入了解食物和水资源等。

值得注意的是,遥感数据可以被认为是计算机视觉中一个独特的模态。与自然图像相比,它涉及到更多样化
的空间分辨率(从厘米 到公里)、时间维度(从小时到几十年)和物体视角(头顶和定向)。

此外,在广阔的地球表面上,“物”(如草地、森林等)比“物” (如建筑物、船舶等)占据的面积要大得多。因此, 
对于遥感图像而言，语义分割的应用频率要高于实例分割，而对语义级标注的需求加剧了获取大规模标签的难
度。目前的遥感语义分割方法大多建立在闭集假设上, 这意味着模型只能识别训练集中存在的预定义类别。然
而,在实际的遥感对地观测中,有无数的新类别,手工标注是不切实际的。



Background

视觉语言模型(VLM)的兴起以其开放词汇语义分割(OVSS)的能力给我们带来了新的启示。然而,通过一些
探索性实验，我们发现为自然图像设计的解决方案在遥感图像上是糟糕的。一个值得注意的现象是，预测掩模
中存在扭曲的目标形状和不拟合的边界。

根据经验,这些问题在很大程度上可归因于特征的分辨率过低（特别是遥感图像）。在当前基于CLIP的
OVSS范例中, 来自CLIP的特征映射被下采样到原始图像的1/16 (vitb /16)。

作者提出了一种简单而通用的上采样器，即simfeature up，以恢复深度特征丢失的空间信息。具体而言，
simfeature up只需要从少量未标记的图像中学习，并且可以对任意遥感图像特征进行上采样。



Method

SimFeatUp
feature up为我们提供了一个优秀的通用上采样器训练范例。然而,它缺乏对无训练设置的一些考虑,导致OVSS 任

务的次优,特别是在遥感环境中。

feature up通过对LR特征的相邻元素加权来估计上采样的HR特征元素。 对于权值
的生成,JBU考虑两个因素,即制导特征中相邻元素与中心元素之间的相似度和距离,
对应于核krange和 kspatail。



Method

SimFeatUp
feature up将CLIP的最终输出,即O [1:hw + 1]作为上采样器的输入。这在基于训练的设置中可以很好地工作



Method

SimFeatUp
为了解决这个问题,作者引入了一个额外的图像重建损失来约束HR特征



Method

SimFeatUp
遵循Feature up中的上采样运算符,即参数化的JBU。JBU的上采样核 krange和kspatail是从制导特征中一个窗口内

的元素计算出 来的

与自然图像不同,目标的大小呈现从米尺度(如树木、花园)到公里尺度(如森林、牧场)的对数尺度。因此,我们设置
了更大的上采样核（11×11）。

我们简化了FeatUp中的组件。在 FeatUp中,参数化的JBU模块被堆叠4次进行16倍上采样, 并且每个JBU模块的参数
是独立的。虽然我们将HR特征输入到CRN中以确保其内容的完整性,但每个JBU模块的行为是不确定的 。 因 此 , 在 
SimFeatUp 中 , 我 们 将 “JBU堆栈”更改为“JBU One”,即只有一个参数化的 JBU用于上采样。



Method

SimFeatUp
CLIP中的每个patch Token都关注于广泛的位置,并且注意图通常具有相似的模式。这表明全局属性CLS Token被附

加到CLIP中的patch Token上。这个属性在分类任务中通常不受关注,但它在密集预测中会显著削弱性能.
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SimFeatUp
CLIP中的每个patch Token都关注于广泛的位置,并且注意图通常具有相似的模式。这表明全局属性CLS Token被附

加到CLIP中的patch Token上。这个属性在分类任务中通常不受关注,但它在密集预测中会显著削弱性能.



Experiments

在遥感应用环境中,不仅需要多类语义分割（mIoU）,还需要提取某些土地覆盖类型(IoU)(如建筑物、道路、水体),
本文选择了17个典型的数据集,涵盖了常见的语义分割、建筑提取、道路提取 和水体分割(洪水检测)任务。
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Background

现有的无训练开放词汇语义分割(OVSS)方法大多基于 CLIP。虽然这些方法取得了进展,但它们往往面临精
确定位的挑战,或者需要复杂的pipelines来组合独立的模块, 特别是在存在大量密集和小目标的遥感场景中更加
糟糕。

最近，Segment Anything Model 3 (SAM 3)面世。 与基于clip的范例不同，SAM 3是一个支持提示概念分割
的统一模型。它建立在DETR和MaskFormer架构之上,采用基于查询的Transformer设计。至关重要的是,SAM 3利
用了一种解耦架构,其中Presence Head被专门设计用于预测提示概念在图像中存在的概率。 同时,Transformer 
Decoder (Instance Head)和Semantic Segmentation Head分别为离散实例和连续语义区域生成精确的掩码。

但其对于遥感图像面临着明显的挑战，密集的小物体和巨大的无定形背景的复杂共存。 因此,为使SAM 3
适应地理空间情景而进行的量身定制探索仍然是有价值的。



Method

本文对SAM 3在遥感OVSS任务中的应用进行了初步探索。在本文中,我们提出了一个初步的探索适应SAM 
3 遥感OVSS任务,而不需要额外的训练。我们研究了 SAM 3 的 统 一 架 构 是 否 能 够 提 供 比 复 杂 的 CLIP-
ensemble方法更强大、更简单的baseline。我们提出的方法, 即SegEarth-OV3,由两个适合SAM 3设计的简单策略
组 成:

Dual-Head Mask Fusion: 首先,我们实现了一个掩码融合策略,该策略结合了SAM 3的语义分割头和Transform 
er解码器(实例头)的输出。这使我们能够利用两个头的优势来获得更好的鲁棒分割。

Presence-Guided Filtering:其次,我们利用存在头的存在得分来过滤掉场景中不存在的类别,减少遥感场景中
庞大的词汇量和Patch级处理造成的误报。



Method

SegEarth-OV3的整体推理流程。给定一个输入图像和一个文本提示列表,我们利用SAM 3的解耦输出。该框架涉
及:(1)实例聚合以整合稀疏对象查询;（用实例头）

(2)双头掩码融合,将细粒度的实例细节与语义头的全局覆盖相结合;（实例头聚合成特征图与语义头分割的特征图
取MAX）

(3)存在引导过滤(使用存在得分),以抑制缺失类别的误报。()



Method

SegEarth-OV3的整体推理流程。给定一个输入图像和一个文本提示列表,我们利用SAM 3的解耦输出。
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SegEarth-OV3的整体推理流程。给定一个输入图像和一个文本提示列表,我们利用SAM 3的解耦输出。



Experiments

在SegEarth-OV 之后,作者在17个遥感数据集上评估了我们的方法,涵盖了不同的场景、分辨率和任务。
评估指标为多类分割的mIoU和二元提取任务的前景类的IoU
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Experiments
作者在三个标准的通用场景数据集上

对SegEarth-OV3进 行基准测试
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