7
gl g,
S 5
el 13 — 1> f‘;‘ ¢ &
E o ;T\ "I ] l )
2,7 1952 a‘&
v L’J‘\ \‘:\‘;) NANJING UNIVERSITY OF AH- NAIITE S ANM AL THINALTE S

I AMU-Tuning: Effective Logit Bias for CLIP-based Few-shot Learning I

Yuwei Tang*, Zhenyi Lin*, Qilong Wang', Pengfei Zhu, Qinghua Hu
Tianjin Key Lab of Machine Learning, College of Intelligence and Computing, Tianjin University, China
{tangyuwei, linzhenyi, glwang,

CVPR 2024



NANJING UNIVERSITY OF Al

I Background & h L AAS

) g B ORI »
Prompt + e (CLIP — . e (CLP + Adapter =—»
2 b

(a) Prompt Tuning (b) Adapter Tuning

CI.IP Aux +
i >—|: MTFi e
Predn:tor
DINO CIJ i

Cache

a’ Learnable riﬁi* Frozen

(c) Cache Tuning (d) AMU-Tuning (Ours)

Figure 1. Comparison of the existing CLIP-based few-shot learn-
ing methods in terms of architecture design.

(a) prompt-tuning methods improve the few-shot learning ability of CLIP by introducing learnable text prompt for
the text encoder of CLIP.

(b) For adapter-based tuning, some lightweight modules, multi-layer perceptron (MLP) , are built at the end of
text and visual encoders to adjust text and visual features for downstream tasks.

(c) cache-based tuning methods present “soft” K-nearest neighbor classifiers storing visual features and labels
of training samples, which are combined with zero-shot CLIP for final classification.
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fAR(Wo)S + Wo o (5) + £ (Wo) o5, (2

where f29(.) and f3%(.) are adapters for text and visual
features, which are achieved by two MLP. Cache-based Tip-

Figure 1: Comparison of different visual classification architectures. The image in the top row with a green re-
gion shows the naive pipeline for image classification (Krizhevsky et al., 2012), where f and W represents the
feature and classifier weight respectively. The following pink, yellow and blue regions represent the pipeline of

CLIP (Radford et al., 2021), CoOp (Zhou et al., 2021), and our proposed CLIP-Adapter respectively.
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Figure 1. The Cascade Paradigm of CaFo. We adaptively incor-

Figure 2. The Pipeline of Tip-Adapter. Given a K -shot N -class training set, we construct the weights of the two-layer adapter by creating pm‘atﬂ thf: knDW ledgﬂ from fﬂ ur t}rpf:‘; Df pl'f:-ll'aining mﬁthﬂds and
a cache model from the few-shot training set. It contains few-shot visual features Firqin encoded by CLIP’s visual encoder and few-shot \
ground-truth labels Liygin. Firain and Lepqin can be used as the weights for the first and second layers in the adapter.C50N @275y ac hle‘g’e a S[[{}I}g few-Shot le arner.

ploits an extra trainable cache of visual DINO features [/]
(Fp) to compute Spisg as

ad (FLcfS)V+ (1 —a)d (Flpf)V, @)

neighbor classifier on a trainable cache of visual CLIP fea-
tures (F'ryc) to generate Sy, 1.€.

¢ (Frcfs) V, (3)
where « is a trade-off parameter computed based on the
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Model Bias Feature Predictor Fusion 16-shot Acc (%)
Zero-shot CLIP [43] - - - - 60.33
CoOp [67] ~ fr (Thias)I§ Thizs fr - 62.95
CLIP-Adapter [17]  fpR(Wo)S + WofpR(£5) + f29(Wo) fo%(£5) CLIP MLP Manual Tuning 63.59
Tip-Adapter-F [63] ¢ (FLf§)V CLIP Cache Manual Tuning 65.51
CaFo [64] (070] (F%rcféj) V+(1—a)g (F%Dfdj) Vv CLIP+DINO  Cache Similarity-based 68.79
AMU-Tuning (Ours) W fAux Aux MTFi LP Uncertainty-based 70.02

Table 1. Comparison of existing CLIP-based few-shot learning methods from the perspective of logit bias. Different from previous works,
our AMU-Tuning learns logit bias by exploiting the appropriate auxiliary (Aux) features with multi-branch training feature-initialized
(MTF1) LP followed by an uncertainty-based fusion, while achieving higher accuracy (Acc) on ImageNet-1K with 16-shot training samples.

we disassemble the computation of logit bias into three key components, logit feature, logit predictor, logit fusion.



I Motivation

Features for Computation of Logit Bias

To compute the logit bias, we train a simple LP for all
auxiliary features. Then, the logit bias is combined with
prediction of zero-shot CLIP by summation for few-shot
classification. Particularly, we train an individual LP for all
auxiliary features within 50 epochs, whose results represent
the superiority of different auxiliary features (indicated by
SUPAux). For measuring the complementarity (CMY ayx) of
different auxiliary features, we define CMY 5, by inverse
of similarity between LP prediction of auxiliary features
(saux) and prediction of zero-shot CLIP (sp):

CMY i = 1— SIM(SD; SAux):

S0 * SAux
SIM(sg, Saux) = : (5)
o Sl Isoll2 - ||saux]|2

where SIM computes the cosine similarity between sa,x and
sg. Clearly, smaller similarity means less correlation be-
tween Sa,, and sg, indicating the auxiliary features may be
more complementary to zero-shot CLIP.
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I Motivation

Features for Computation of Logit Bias

Model SUPAu (%) CMYau Fusion (%)
7S-CLIP [43] N/A N/A 60.33
CLIP [43] 56.93 0.438 65.34
DINO [7] 55.65 0.816 68.32
MoCov3 [10] 57.68 0.837 69.35
MAE [21] 38.98 0,722 65.49
SparK [52] 28.31 0.770 63.56
MILAN [25] 66.36 0.718 69.24

Table 2. Comparison of different auxiliary features in terms of
complementary (CMY aux), superiority (SUPaux) and fused results
on ImageNet-1K with 16-shot samples. The best and second-best

results are highlighted in bold and underline, respectively.
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1. complementarity (CMY 4,,) is more important than
superiority (SUP,,,) for auxiliary features, (CLIP,DINO)

2. the auxiliary features with higher SUP,  achieve
better fusion results, when they have similar CMY 5,
(MoCov3, DINO)
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Logit Predictor

To evaluate the effect of logit predictor, we empirically compare with several predictors, including MLP,
Cache, Cache with random initialization (Cache-Random), and a simple linear probing (LP) as baseline.

68

—+ LP
67 H Cache (random)
—f— Cache

—= MmLP

Score(%)

Number of Training Samples Per Class

Figure 3. Results of different logit predictors on ImageNet-1K.
conclusion

1. LP achieves similar performance with Cache-Random, and both of them are clearly superior to MLP.
2. that feature initialization is helpful for the logit predictor.
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Logit Predictor

individual training of bias branch and joint training of bias branch with zero-shot CLIP

Auxiliary Features Individual Joint Joint+ZO

CLIP [43] 56.93 11.23 65.34
DINO [7] 55.65 36.24 68.32
MoCov3 [10] 57.68 42.82 69.35

Table 3. Comparison (%) of two training strategies (i.e., Individual
and Joint) for the bias branch on ImageNet-1K. Joint+Z0 indicates
the fused results of joint training bias branch with zero-shot CLIP.

the joint training strategy makes logit bias as a pure supplement to zero-shot CLIP by considering the
complementarity of auxiliary features, but it cannot fully explore the superiority of auxiliary features.

conclusion

existing logit predictors do not fully explore the superiority of auxiliary features
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Logit Fusion
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To fuse logit bias with zero-shot CLIP, a manually tuned parameter [3 is used to control the effect of logit bias
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Figure 4. (a) Results of Tip-Adapter-F and CaFo with various /3 on
ImageNet-1K and OxfordPets. (b) Visualization of the distribution
of max logits for zero-shot CLIP on ImageNet-1K.

conclusion

trade-off parameter greatly affects performance of fusion, while prediction confidence of zero-shot CLIP can be

regarded as an indicator of logit fusion
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Auxiliary Features f Aux

Auxiliary Features fA"™ According to the conclusion in
Sec. 3.2.1, we can seek the optimal auxiliary features fA"X
from a group of feature candidates based on the metrics of
superiority and complementarity (Eq. (5)). Specifically, we
employ a certain of features lying in ﬂgﬂp_KﬂQg’p'M for vari-
ous downstream tasks, where Q?p K and Qg’pm indicate the
sets of features with Top-K superiority and Top-M comple-
mentarity, respectively. For efficiency, we adopt MoCov3
model with the backbone of RN50 to obtain the auxiliary
features fA" with no special declaration.
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Multi-branch Training of Feature-initialized (MTFi) Logit Predictor

Furthermore, we propose a multi-branch training strat-
egy to fully explore the superiority of auxiliary features.
Specifically, besides the original classification loss (i.e.,
Lrusion) based on the fused logit s , we introduce an extra

ic;l]y, under C-way-N-shot setting with C classes and N
samples of each class, we initialize the weights W of LP by
using the mean of auxiliary features from different classes:

{;‘“‘VO — [my, ma, - mc}T, traipinfg branch to minimize the cross-entropy loss between
7 logit bias sp;;s and the ground-truth label of y as
1 CxN
m; == ) £ i={,2--,C}, () '
N ; i { } Cauy = — Z Yj llog(g(sgias))! (8)
g=1

where ﬁg is the initialization of W, and ff}“" is the j-th
feature of i-th class. As such, our feature-initialized LP pre-
dicts logit bias sy, for j-th training sample as

Sgias - Wfﬁux. (7) gtotal — (1 — }\)EAU)( -+ )\EFusion: (9)

where g(-) is a softmax function. As such, the total loss of
our multi-branch training can be formulated as:

where A\ is a hyper-parameter to balance effect of fgygion and
faux- From Eq. (6) and Eq. (8), we can see than our pro-

. T£ C-way N-shot IRZE ™ (B C 25, B N MER) |, £ SREAMSIERYE Keliait LP RINERERE
2 Logit bias: TEHEENMSESREAAY logit & s bias, s bias , 5 zero-shot CLIP FlIgt&
3. Multi-branch Training | FusionfaS={iitRE S EBR; | Aux JHEEBISHIERY logit bias tEE &S 2eEH
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Uncertainty-based Fusion

Uncertainty-based Fusion Based on the analysis in
Sec. 3.2.3, the hyper-parameter 3 of bias fusion is very
sensitive to models and datasets. Meanwhile, such hyper-

parameter is related to prediction confidence of zero-shot . iy =

CLIP. Therefore, we present an uncertainty-based fusion to 1. g I)\még (KLI I'tOSIS) 1’E7Sl zzmell.ErgE

adaptively combine zero-shot CLIP with logit bias based

we itoduce an uncetainty (o based on Kurtoss oo, e MRUrirs, GRASFELT S, CLIP SRS, kX
s S MME LN Ze 4N MllEzs =

fourth moment) [51] to represent prediction confidence as gu%m r_ {EE lﬁﬂﬁ%ﬁﬂu{gﬂ ED %t&' CLIP ﬁi:‘)]ﬂixzzﬁﬁxa k/J\°

s 3

(so . ,u)T_ - 2. BIEAREMRZE logit bias BIFZIN

a
where p¢ and o are the mean and the standard deviation of % K j( (CLIP ﬁ'ﬁmugrg) ! |Og|t bias ﬁrﬁk;ﬁz&x
N 2 N —= : ; =y wa 100]
So, respectively. p is a parameter to control the power of un- é K /J\ (CLI P ﬁ'i:')"\UZ:ﬁZE) 1 |Oglt bias J'_':il_ﬁkiajmo

certainty. As such, we can adopt « to balance effect of logit
bias. Specifically, we increase effect of logit bias for small
rk; otherwise, effect of logit bias is decreased. In conclusion,
our AMU-Tuning method can be formulated as

s:so+§ﬁfm, (11)

K

where only a lightweight LP with the parameters of W is
optimized by the loss £ (Eq. (9)).
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Score S =

Method ource arget

I-shot 2-shot 4-shot 8-shot 16-shot Dataset INK v2 S A R
LP-CLIP [45] 22.17 31.90 4120 49.52 56.13 ZS-CLIP [43] 60.33 53.27 35.44 21.65 56.00
CoOp [67] 57.15 57.81 59.99 61.56 62.95 CoOp [67] 62.95 55.40 34.67 23.06 56.60
CLIP-Adapter [17] 61.20 61.52 61.84 62.68 63.59 CLIP-Adapter [17] 63.59 55.69 35.68 - -
VT-CLIP [42] 60.53 61.29 62.02 62.81 63.92 Tip-Adapter-F [63]  65.51 57.11 36.00 - -
Tip-Adapter-F [63] 61.32 61.69 62.52 64.00 65.51 CaFo [64] 68.79 57.99 39.43 - -
CaFo [64] 63.80 64.34 65.64 66.86 68.79 AMU-Tuning (RN50) 70.02 58.64 40.04 25.65 57.10
CaFo* [64] 61.58 62.76 64.31 66.25 68.05 CoCoOp [66] 71.02 64.20 47.99 49.71 75.21

MaPLe [28] 70.72 64.07 49.15 50.90 76.98

AMU-Tuning (Qurs) 62.60 64.25 65.92 63.25 70.02 AMU-Tuning (ViT)  74.98 65.42 50.37 52.05 78.09

Table 4. Comparison (in %) of different SOTA methods on Table 5. Comparison (%) of different methods under OOD setting.
ImageNet-1K under various few-shot settings.

a CaFo variant (namely CaFo* ) by excluding use of
the extra DALL-E and GPT-3.
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Figure 5. Comparison (in %) of different SOTA methods under various few-shot settings on ten downstream tasks.
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- Average over 11 datasets Backbone
- Models RN50 RN101 ViT-B/32 ViT-B/16
761 7S-CLIP [43] 6033 65.53 63.80  68.73
57 CoOp [67] 6295 66.60 6685  71.92
? 72 CLIP-Adapter [17]  63.59 6539 66.19  71.13
e | . Tip-Adapter-F [63]  65.51 68.56 68.65  73.69
58 | s i CaFo [64] 68.79 70.82 70.82  74.48
o s CaFo* [64] 68.03 7021 7044  74.11
sl AMU-Tuning (Ours) 70.02 71.58 71.65  74.98

1 2 4 g 16
Mumber of training samples per class

Table 7. Comparison (%) of SOTA methods with different visual
Figure 6. Results on eleven downstream tasks by average. encoders of CLIP on IN-1K with 16-shot training samples.



I Ablation study

Component Score (%)

AUX MTF: UF | 1-shot 4-shot 16-shot

Baseline 61.16 62.33 65.34

v 62.15 5531 69.35

v 61.83 63.16 66.17

v | 61.70 63.08 65.90

v v 6235 6561 69.72

v v v | 62.60 65.92 70.02

Table 6. Results of AMU-Tuning with various modules on IN-1K.
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