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@®Are fine-tuned VLMs well-calibrated?

Expected Calibration Error (ECE)

K
ECE = Z % lacc (bg) — conf (b)], 4)
k=1

where acc (-) and conf (-) denotes the average accuracy and
confidence in bin by.

Zero-Shot CoOp

ECE: 3.11%

CoCoOp MaPLe ProGrad
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ECE: 1.94%

ECE: 4.91%

Accuracy
=

ECE: 21.36% ECE: 13.94% ECE: 6.81%

r

00552 04 0.6 0.8 1.0 00 0.2 0.4 0.6 0B 1000 0.2 0.4 0.6 0.8 1.000 0.2 04 06 0.8 1000 0.2 0.4 06 08 10

Confidence

ECE: 11.26%

Figure 1. Reliability of fine-tuned CLIP (ViT-B/16) on the
Flower102 dataset. ECE: Expected Calibration Error (lower is
better). Miscalibration is depicted in pink for overconfidence and
purple for underconfidence.
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Fig. 2 Overview of Context Optimization (CoOp). The main idea is to model a prompt’s context using a set of learnable
vectors, which can be optimized through minimizing the classification loss. Two designs are proposed: one is unified context,
which shares the same context vectors with all classes; and the other is class-specific context, which learns for each class a

specific set of context vectors.
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Figure 1. Comparison of MaPLe with standard prompt learning methods. (a) Existing methods adopt uni-modal prompting techniques
to fine-tune CLIP representations as prompts are learned only in a single branch of CLIP (language or vision). (b) MaPLe introduces
branch-aware hierarchical prompts that adapt both language and vision branches simultaneously for improved generahzatlon (¢c) MaPLe
surpasses state-of-the-art methods on 11 diverse image recognition datasets for novel class generalization task.
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I Background

@Can fine-tuned VLMs be calibrated?

Table 1. ECE (%) of fine-tuned CLIP with different calibration
methods. We use ProDA to fine-tune CLIP-ViT-B/16 on ImageNet-
1K. “ZS” means zero-shot CLIP and “Conf” means confidence TS

score without calibration after tuning. “~" means the results are not DEN:
applicable. “Conf” shows underconfidence in base classes. “TS” HB:
and “DEN”" show overconfidence in new classes. IR:

ZS Conf TS DEN HB IR  MIR

Baseclasses 3.58 482 194 073 423 209 0.82
New classes 2.09 159 390 3.86 - & =

MIR:
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Temperature Scaling GRER4E)
Density-Ratio Calibration (ZELURE)
Histogram Binning (BE5E5E)
Isotonic Regression (ZFiE[A])F)
Multi-Isotonic Regression (£ZE[a])3)

IR: EE=85%, ERRREBRESINSTIMERSETIREZANXER

MIR(ERFZHE, FHXIEAREHITRIERIE

Finding

(1) Post-hoc calibration can remedy miscalibration in base classes.
(2) Post-hoc calibration on base classes can not transfer to new classes.
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Feature Space Analysis
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Figure 2. Paired inputs from image () / text (w) are sampled from
the DTD dataset fed into zero-shot / tuned CLIP and are visualized
in 2D using SVD. Compared with zero-shot CLIP, CoOp has a
larger textual distribution gap between the base and new classes
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the deviation degree in the textual gap is crucial for open-vocabulary

calibration
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I Motivation
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Definition 4.1 (Proximity (Xiong et al., 2023)). Consider " . _;_-_ v calibration
a feature z € RY as the embedding of a test sample and | 7 e
: nxd b bipusand 080 — S s A
the held-out feature embeddings £ € R™*¢, proximity is a i ' o S = o g
i . : £ 075 = ~—a — < 10 T O
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. . . £ 0.70 « B s
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Figure 3. Class-wise performance on StanfordCars dataset after

tuning. ECE™ with a positive (negative) value denotes overconfi-
6) dence (underconfidence). The scatters represent the origin results
Here we use e~ as o (-) and l2-distance for dist (-, -). and the broken line denotes the bin-based results. Confidence and
ECE”™ increase as proximity decreases. Temperature scaling (TS)
can not mitigate the overconfidence.

Lower proximity correlates with higher confidence and ECE
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Textual deviation estimation
Ideally, the model is expected to give highly uncertain predictions for
examples from novel classes, with relatively low accuracy.
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Let w; and w’ be the normalized text features of class c¢;
from the pre-trained and tuned VLMs respectively. The
Textual Deviation (TD) score for class ¢; 1s formulated as:

v(ei) = l;((ti’ VVT}))? (7)
Calibrated inference
L€ () = ~(¢) - T - sim (¢ (), (L)) . (8)

) 1)
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Table 2. Average calibration performance across 11 datasets. “Conf” represents the origin performance on open-vocabulary classes with
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existing tuning methods. “DAC” to our method applied to existing tuning methods. | indicates smaller values are better. Calibration error

is given by x 10~ 2. Bold numbers are significantly superior results.

ECE(]) ACE(]) MCE(]) PIECE(])
Method Conf DAC Conf DAC Conf DAC Conf DAC
CoOp 13.84 7.00 13.76 691 3.80 1.71 1471  9.02
CoCoOp 6.29 4.82 6.21 4.77 1.79 1.40 8.07 7.15
ProDA 427  3.99 435 4.08 1.27 1.32 6.57 6.35
KgCoOp 436 4.32 443  4.38 1.18 1.13 6.67 6.63
MaPLe 577 4.61 571  4.64 1.82 142 759 6.98
ProGrad 422 3.74 427 3.74 1.22 1.09 6.75  6.55
PromptSRC  3.84  3.63 3.92 3.69 1.09 1.08 6.26 6.17
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I Experiments

Table 2. Average calibration performance across 11 datasets. “Conf” represents the origin performance on open-vocabulary classes with
existing tuning methods. “DAC” to our method applied to existing tuning methods. | indicates smaller values are better. Calibration error
is given by x10™2. Bold numbers are significantly superior results.

ECE(]) ACE() MCEC(]) PIECE(])
Method Conf DAC Conf DAC Conf DAC Conf DAC
CoOp 13.84 7.00 13.76 691 3.80 1.71 14.71  9.02
CoCoOp 6.29 4.82 6.21 4.77 1.79 1.40 8.07 17.15
ProDA 427  3.99 435 4.08 1.27 1.32 6.57 6.35
KgCoOp 436 4.32 443 438 1.18 1.13 6.67 6.63
MaPLe 577 4.61 571  4.64 1.82 142 7.59  6.98
ProGrad 422 3.74 427 3.74 1.22  1.09 6.75  6.55
PromptSRC  3.84  3.63 3.92  3.69 1.09 1.08 6.26 6.17

DAC improves open-vocabulary calibration in existing prompt tuning
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I Experiments

Table 3. Calibration results of ECE (%) across different confidence levels. A shows the improvement achieved by DAC. Bold numbers
denote the top-3 most significant improvements.

Method 0.1 0.2 0.3 0.4 i 0.6 0.7 0.8 0.9 1.0

Conf 0.00 19.24 18.86 15.87 2042 3328 3030 3784 41.60 18.57
CoOp DAC 0.00 495 8.17 11.33  6.51 11.42 2412 1741 11.37 -0.94
A 0.00 -1429 -10.69 -454 -1391 -21.86 -6.18 -2043 -30.23 -19.51

Conf 000 0.00 -1280 390 16.73 1050 38.07 2393 19.11 12.13
MaPle +DAC 0.00 -3.62 -15.32 5.72 6.74 3.12 15.45 6.16 9.29 0.35
A 0.00 -362 -252 182 -1099 -738 -22.62 -17.77 -982  -5.58

Conf 0.00 -3.82 0.14 -0.10 4.29 6.31 3.48 8.11 1.23 4.86
ProGrad +DAC 0.00 -0.71 0.03 .30 ~1.32 0.40 -0.65  -0.04 0.44 -0.34
A 0.00 3.11 -0.11 140 -561 591 413 815 -079 -5.20

DAC significantly reduces calibration error, especially for high-confidence
predictions
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Table 4. Comparison results of ECE (%) using different visual
backbones on Flower102 dataset. The smaller values are better.

CoOp CoCoOp ProGrad
Backbone Conf DAC Conf DAC Conf DAC
RNS50 15.72 8.03 6.00 4.88 4.1 3.39
ViT-B-32 21.07 11.72 9.71 6.57 5.11  4.36

ViT-B-16  18.34 10.19 1149 17.74 545 5.04
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Figure 6. Comparison results of ECE (%) using different shots.
Miscalibration is a common issue and DAC can reduce it across
different shots. The Y-axis is presented in an exponential form for

a better view.

DAC is effective across various few-shot settings
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Ablation results
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Figure 7. Ablation results of textual feature normalization with
CoOp. We compare the effect of using normalization in the textual
feature vs. without normalization.

Textual feature normalization is critical
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Contrast Metric
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Contrast is an indicator used to measure a model’s ability to distinguish between
positive and negative samples, which is widely used in contrastive learning.

» Positive Similarity. For each sample 7, the similarity

score with its ground-truth label y; is extracted as s:r —

S|i, y;], with the average positive similarity is defined

; . _ 1N
as: Positive Mean = < > ."; s;
Negative Similarity. For each sample ¢, the maximum
similarity score among incorrect labels is calculated as
s; = Mmax 1y, S|i, j], with the average negzj\tfive simi-

. . ~ ) . . 1 =
larity is defined as: Negative Mean = & > .7 s;
Difference Calculation. The contrast metric is calcu-
lated as the difference between the average of positive
and negative similarities:

N

N
1 1
- = T
Contrast = N ‘2_131- N E S; (3)

=1
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when the representations of fine-tuned VLMs deviate from the pre-trained image-text alignment,
their class scores often become biased toward certain categories or exhibit similar scores across
multiple classes, losing the pre-trained ability to discriminative intra-class and inter-class samples

and causing miscalibration.
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@Dcontrast and ECE exhibit a negative
correlation for unseen classes
@well-aligned VLMs typically exhibit better
confidence calibration
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e 5
z= NZU?E—P@-L (5)
=1

where N denotes the tota] number of classes, and P =
{p:}N | and P = {p;}}, represent the logits output by
the original and fine- tuned CLIP, respectively. In particular,
according to our analysis, the logits of contrastive learning-
based VLLMs are equivalent to the contrast metric, So z can
serve as an indicator for measuring the confidence differ-
ence between the original and fine-tuned VLLMs. To better
leverage its negative correlation with ECE, we design the
following function to transform z into CAW:

F =g (6)

Due to the negative correlation between ECE and contrast,a range of [0, 1] and aligns with the
required monotonicity
. Since fine-tuned VLMs may be underconfidence and overconfident in various datasets,
equipping CAW with the ability to deal with underconfidence
: Since the text and image features in CLIPbased models undergo normalization before
computing the logits, the L1 distance may be small,and enable the function to capture input
variations more effectively
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different datasets and fine-tuning methods require varying levels of calibration

’})2! Ifry < /\la
Y=497 ifA <v <A, (7)
'}’2 if v > .

where # represents the final calibration weight, y represents
the output of CAW, and A\; and A5 represent the boundary
points of the interval for shrinking or amplifying . Through
the following two designed modules, CAC achieves more
flexible confidence calibration compared to CAW:

Given an input image ¢, we first collect the CAC scores of
this image, denoted as *;, which is then used to calculate
the rectified logits as follows:

LEAC = 3, % 1 x logits; (8)
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Table 1. Average calibration performance across 11 datasets. “Conf” represents the original performance on open-vocabulary classes with
existing tuning methods. | indicates smaller values are better. Bold numbers are significantly superior results.

ECE(]) ACE() MCE(]) PIECE(])
Conf DAC CAC Conf DAC CAC Conf DAC CAC Conf DAC CAC

CoCoOp 544 570 424 535 560 4.22 1.388. 140 120 735 8.06 6.83
KgCoOp 398 411 385 393 4.09 378 1.08 1.18 110 645 6.62 6.39
MaPLe 780 591 535 7777 593 530 208 162 161 953 8.19 7.69
ProGrad 504 6.13 4.04 495 6.18 4.05 147 153 124 741 820 6.75
PromptSRC 429 455 347 424 441 340 .16 1.17 103 670 682 6.12

Method

ECESFTaTNEAD B MABSERE (bins) |, Y |B,|

AN bin SR B SRS R R EA BOE = ), =" lace(Bn) — conf(By,)|
A

ACE:(8 bins EiREB(SEHIFEIY ISR AKETT 1

HEEIZEI:IEHJUZFE = ACE = umzl|acc(Bm)—conf(Bm)j
MCE & RHIERTE bins RREREMSAME MCE= max |[acc(Bp) — conf(By)
PIECE: 5|\ 7 il KBRS, TG SERMn S B AR IR e jf@) _,
B SKERN PIECE, ‘nzl (e 1)
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Table 4. Average calibration performance across 11 datasets in 5 prompt learning methods. “w/0” indicates the results of CAC without the

inclusion of that specific component.

Method Conf DAC w/o k w/o « w/o EXP  w/o piecewise CAC
CoCoOp 5.44 5.70 9.08 9.73 11.135 4.72 4.24
KgCoOp 3.98 4.11 T.52 8.12 26.74 3.97 3.85
MaPLe 7.80 5.91 1132 1125 28.13 6.57 5.35
ProGrad 5.04 613 8.92 11.84 28.85 4.44 4.04
PromptSRC 4.29 4.55 7.80 941 23.87 3.84 3.47
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Tﬁbf? 3. Average calibration performance of different & of CAC Table 5. Average calibration performance of different a of CAC
across 11 datasets. across 11 datasets.

Method ~ Conf 10 15 20 25 Method  Conf 1.00 1.05 1.10 1.20
CoCoOp 544 482 424 641 11.09 CoCoOp 544 787 588 424 4284
KgCoOp 398 382 385 3.66 5.16 KeCoOp 3.98 58 381 385 4.73
MaPLe  7.80 682 535 814 1252 hiPle 780 613 603 €88 =95
meG?lec i-gg ‘;‘g; ;‘-g‘; ggg 1823714 ProGrad 504 1038 7.09 4.04 429
tompt : - - . : PromptSRC 429 7.87 5.00 347 3.90

Table 6. The impact of different piecewise function thresholds on
CAC confidence calibration.

A1 A2
Method CAC
0.85 0.95 0.95 1.05

CoCoOp 5.63 4.84 4.63 4.57 4.24
KgCoOp 4.2 3.55 3.72 3.59 3.85
MaPLe 7.88 592 8| 5.69 3.3
ProGrad 5.19 5.27 471 4.65 4.04
PromptSRC  4.41 4.12 3.83 3.69 3.47
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