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Background

Recent advances in vision-language models [19, 31, 43] have opened a new 
door for integrating human language into various computer vision tasks. Take 
CLIP [31] as an example. It can enable zero-shot image classification by 
leveraging a shared embedding space that is learnt from web-scale image-text 
pairs. Within this shared space, images can be directly recognized by matching 
their features with the text embeddings of CLIP classes. At the other end, CLIP 
often faces challenges while handling various specific downstream images, 
especially when the downstream images have clear domain and distribution shifts 
as compared with the CLIP training images.



Background

(1)  Test-time adaptation (TTA) is a new approach designed to handle domain shift 
by allowing models to adapt to new environments during inference. Although 
promising, its application in vision-language models is still underexplored. TPT 
and DiffTPT address this gap by learning domain-specific prompts from test data 
to guide models like CLIP. They optimize a prompt for each test sample using 
augmented views to reduce prediction uncertainty. However, the high 
computational cost of this prompt optimization limits their practical use.

(2)  We propose a training-free Dynamic Adapter (TDA) for efficient and effective 
test-time adaptation of vision-language models like CLIP, without requiring 
backpropagation. As shown in Fig. 1(b), TDA maintains a lightweight key-value 
cache, storing CLIP image features as keys and pseudo labels as values. It is both 
effective, by progressively refining pseudo labels with low-entropy predictions, 
and efficient, as it uses simple matrix operations and requires no parameter 
updates.



Method

We propose a training-free dynamic adapter (TDA) for efficient test-time 
adaptation of pre-trained vision-language models like CLIP. TDA consists of two 
lightweight key-value caches: one for positive learning and the other for negative 
learning. The positive cache stores high-confidence predictions to improve 
accuracy, while the negative cache handles noisy pseudo labels by identifying 
class absence. Combining both caches, TDA achieves superior performance in 
speed and accuracy during test-time adaptation.



Method

Positive Cache: TDA uses a key-value cache in the form of a dynamic queue 
to store high-quality pseudo labels (values) and their corresponding features (keys) 
during test-time adaptation. The cache starts empty and grows as more confident 
predictions (with lower entropy) are added. Unlike a fixed-size FIFO queue, this 
queue dynamically expands and acts like a priority queue, prioritizing entries by 
entropy. Each class maintains its own separate queue to ensure proper structure 
and ordering.



Method

TDA builds a positive cache by generating pseudo labels for test images 
using a pre-trained CLIP model. For each test sample, it applies softmax to the 
prediction to get a one-hot pseudo label and decides whether to add it to the cache 
based on two conditions:

(1)   If the current class has fewer cached pairs than the max capacity, the 
pseudo label and its image features are added directly.

(2)  If the class cache is full, the new pair replaces the one with the highest 
entropy (i.e., the least confident prediction), but only if the new prediction has 
lower entropy.

This ensures that TDA selectively keeps confident (low-entropy) predictions 
and maintains a balanced cache size across classes.



Method

Negative Cache: Similar to the positive cache in our TDA, the negative 
cache is also a dynamic queue structure with negative keys and negative values 
denoted as  and  , respectively. It aims to gather CLIP-generated image features to  
and the corresponding negative pseudo labels to  . Unlike the pseudo labels in the 
positive cache, the negative pseudo labels are obtained by applying negative mask 
on the class probabilities as.

In negative pseudo labeling, higher probabilities than a threshold are selected 
as negative pseudo labels from uncertain predictions, with uncertainty measured 
by the entropy of predictions. A negative pseudo label is a vector where elements 
greater than the threshold are set to -1, and others to 0. Unlike traditional negative 
learning methods, TDA selects negative pseudo labels from uncertain predictions 
to avoid bias towards certain predictions. When constructing the negative cache, a 
testing feature will be included if its prediction entropy falls within a specified 
interval.



Experiments

Benchmarks: We evaluate our method on two benchmarks: an out-of-
distribution (OOD) benchmark and a cross-domain benchmark, following [35]. 
The OOD benchmark includes four ImageNet variants (ImageNet-A, V2, R, S) to 
assess model robustness on unseen data. The cross-domain benchmark tests 
generalization across 10 diverse datasets (e.g., Aircraft, Caltech101, EuroSAT, etc.) 
to evaluate adaptability across different domains and class spaces.



Experiments

Cross-Domain Benchmark Results. We compare TDA with top methods on 
the cross-domain benchmark. As shown in Table 3, TDA outperforms both TPT 
and DiffTPT. Using CLIP-ResNet-50 and CLIP-ViT-B/16, TDA improves average 
accuracy over TPT by 3.37% and 2.43%, respectively. TDA also shows clear gains 
over DiffTPT, confirming its strong test-time adaptability across diverse datasets. 
This is especially valuable for models like CLIP that aim to classify new classes 
without extra training.



Experiments

Ablation studies on two cache designs in TDA: Positive Cache and Negative 
Cache. All the models are built upon the baseline model CLIP-ResNet-50.

Parameter studies on the Shot Capacity in Positive Cache and Negative 
Cache.



Experiments

We propose TDA, a dynamic adapter for efficient test-time adaptation of 
vision-language models. TDA uses a key-value cache to store test features and 
pseudo labels, enabling progressive adaptation. It also introduces a negative cache 
to reduce the impact of noisy predictions by excluding uncertain classes. 
Experiments on two benchmarks show that TDA outperforms existing methods 
while being more efficient, offering a practical and effective solution for adapting 
vision-language models at test time.
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