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Background

Recent advances in vision-language models [19, 31, 43] have opened a new
door for integrating human language into various computer vision tasks. Take
CLIP [31] as an example. It can enable zero-shot image classification by
leveraging a shared embedding space that is learnt from web-scale image-text
pairs. Within this shared space, images can be directly recognized by matching
their features with the text embeddings of CLIP classes. At the other end, CLIP
often faces challenges whilé handling various specific downstream images,
especially when the downstream images have clear domain and distribution shifts

as compared with the CLIP training images.

(1) Contrastive pre-training (2) Create dataset classifier from label text
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Background

(1) | Test-time adaptation/(TTA) 1s @ new approach designed to handle domain shift
by allowing models to adapt to new environments during inference. Although
promising, its application in vision-language models is still underexplored. TPT
and DiffTPT address this gap by learning domain-specific prompts from test data
to guide models like CLIP. They optimize a prompt for each test sample using
augmented views to reduce prediction uncertainty. However, the high

computational cost Of this prompt optimization limits their practical use.

(2) We propose a training-free Dynamic Adapter (TDA) for efficient and effective
test-time adaptation of vision-language models like CLIP, without requiring
backpropagation. /As shown in Fig. 1(b), TDA maintains a lightweight key-value
cache, storing CLIP image featuresfas keys and pseudo labelsfas values. It is both
effective, by progressively refining pseudo labels with low-entropy predictions,
and efficient, as it uses simple matrix operations and requires no parameter

updates.
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Method

Positive Cache: TDA uses a key-value cache in the form of a dynamic queue

to store high-quality pseudo labelsi(values) and their corresponding features (keys)

during test-time adaptation. The cache starts empty and grows as more confident

predictions (with lower entropy) are added. Unlike a fixed-size FIFO queue, this

queue dynamically expands and acts like a priority queue, prioritizing entries by

entropy. Each class maintains its own separate queue to ensure proper structure

and ordering.
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Method

TDA builds a positive cache by generating pseudo labels for test images
using a pre-trained CLIP model. For each test sample, it applies softmax to the
prediction to get a one-hot pseudo label and decides whether to add it to the cache
based on two conditions:

(1) If the current class has fewer cached pairs than the max capacity, the
pseudo label and its image features are added directly.

(2) Ifthe class cache is full, the new pair replaces the one with the highest
entropy (i.€., the least confident prediction)), but only if the new prediction has
lower entropy.

This ensures that TDA selectively keeps confident (low-entropy) predictions

and maintains a balanced cache size across classes.

Ppos(ftest) — A(ftestQ;];)f‘p:
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Negative Cache: Similar to the positive cache in our TDA, the negative A8 p : / Z ‘
cache is also a dynamic queue structure with negative keys and negative values -
denoted as and , respectively. It aims to gather CLIP-generated image features to ) ',:‘dfﬁ

and the corresponding negative pseudo labels to . Unlike the pseudo labels in the
positive cache, the negative pseudo labels are obtained by applying negative mask
on the class probabilities as.

In negative pseudo labeling,/higher probabilities than a threshold are selected
as negative pseudo labels from uncertain predictions, with uncertainty measured
by the entropy of predictions. A negative pseudo label is a vector where elements
greater than the threshold are set to -1, and others to 0. Unlike traditional negative o o
learning methods, TDA selects negative pseudo labels from uncertain predictions ' neg(ftest) =—A (f test QE)LHI
to avoid bias towards certain predictions. When constructing the negative cache, a
testing feature will be included if its prediction entropy falls within a specified ‘

PTDA(ftest) = ftesth LA Ppus (ftest) i Pneg(ftest)

interval.
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Benchmarks: We evaluate our method on two benchmarks: an out-of-
distribution (OOD) benchmark and a cross-domain benchmark, following [35].
The OOD benchmark includes four ImageNet variants (ImageNet-A, V2, R, S) to
assess model robustness on unseen data. The cross-domain benchmark tests

generalization across 10 diverse datasets (e.g., Aircraft, Caltech101, EuroSAT, etc.)

to evaluate adaptability across different domains and class spaces.

.

i/ \

Method ImageNet ImageNet-A ImageNet-V2 ImageNet-R ImageNet-S Average OOD Average
CLIP-ResNet-50 59.81 23.24 5291 60.72 35.48 46.43 43.09

CoOp 6333 23.06 55.40 56.60 34.67 46.61 0243
CoCoOp 62.81 23.32 55.72 57.74 34.48 46.81 4282 . . .
Tip-Adapter 62.03 2313 53.97 60.35 35.74 47.04 4330 Method Testing Time ~ Accuracy  Gain
TPT 60.74 26,67 54.70 59.11 35.09 4726 43.89 .

DiffTPT 60.80 31.06 55.80 58.80 37.10 48.71 45.69 CLIP-ResNet-50 12min 59.81 0
TDA (Ours) 6135 3029 55.54 62.58 38.12 4958 46.63 TPT 12h 50min 60.74 +0.93
CLIP-VILB/I6 6834 49.89 61.88 77.65 48.24 6120 59.42 . . ’ :
CoOp 7151 49.71 64.20 75.21 47.99 61.72 59.28 DiffTPT 34h 45min 60.80 #0199
CoCoOp 71.02 50.63 64.07 76.18 4875 62.13 59.01 .

Tip-Adapter 7075 51.04 63.41 77.76 4888 62.37 6027 TDA (Ours) 16min 61.35 +1.54
TPT 68.98 54.77 63.45 77.06 47.94 62.44 60.81

DIff TPT 70.30 55.68 65.10 75.00 46.80 62.28 60.52

TDA (Ours) 69.51 60.11 64.67 80.24 50.54 65.01 63.89
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Cross-Domain Benchmark Results. We compare TDA with top methods on
the cross-domain benchmark. As shown in Table 3, TDA outperforms both TPT
and DiffTPT. Using CLIP-ResNet-50 and CLIP-ViT-B/16, TDA improves average
accuracy over TPT by 3.37% and 2.43%, respectively. TDA also shows clear gains
over DiffTPT, confirming its strong test-time adaptability across diverse datasets.
This is especially valuable for models like CLIP that aim to classify new classes

without extra training.

Method Aircraft Caltechl01 Cars DTD EuroSAT Flowerl02 Foodl01 Pets SUN397 UCF101 Average
CLIP-ResNet-50  16.11 87.26 25.79 62.71 74.82 82.97 60.85 59.48 56.63

CoOp 15.12 86.53 3052 3129 26.20 61.55 359 810D 5813 59.05 56.18
CoCoOp 14.61 87.38 56.22 3853 28.73 65.57 76.20  88.39  59.61 i L 57.23
TET 17.58 87.02 58.46  40.84 28.33 62.69 74.88 8449  61.46 60.82 57.66
DiffTPT 17.60 86.89 60.71 40.72  41.04 63.53 79.21 83.40  62.72 62.67 59.85
TDA (Ours) 17.61 89.70 57.78 43774  42.11 68.74 1173 86.18  62.53 64.18 61.03
CLIP-ViT-B/16 23.22 .5 66.11  45.04 5042 66.99 82.86 8692  65.63 65.16 64.59
CoOp 18.47 93.70 64.51 4192  46.39 68.71 8530  89.14  64.15 66.55 63.88
CoCoOp 22.29 9579 64.90 45.45 3923 70.85 8397 90.46  66.89 68.44 64.63
TFE 24.78 94.16 66.87 47775 4244 68.98 84.67  87.79  65.50 68.04 65.10
DiffTPT 25.60 92.49 67.01 47.00  43.13 70.10 8723 88.22  65.74 62.67 65.47

TDA (Ours) 239 94.24 67.28 47.40  58.00 71.42 86.14  88.63  67.62 70.66 67.53
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