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I Background

Setting: Generalized Category Discovery

Existing recognition methods are not able to deal with this setting, because they make several restrictive
assumptions, such as the unlabelled instances only coming from known — or unknown — classes, and the
number of unknown classes being known a-priori. We address the more unconstrained setting, naming it
‘Generalized Category Discovery’, and challenge all these assumptions.
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open-set recognition (OSR)
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Unlabelled data of novel categories

Clustering assignment

Figure 1. Learning to discover novel visual categories via deep
transfer clustering. We first train a model with labelled images
(e.g., cat and dog). The model is then applied to images of un-
labelled novel categories (e.g., bird and monkey), which transfers
the knowledge learned from the labelled images to the unlabelled
images. With such transferred knowledge, our model can then si-
multaneously learn a feature representation and the clustering as-
signment for the unlabelled images of novel categories.

IRl OSR (FHERIRA!) NCD (#h&R) GNCD (I"X#hXKM)
EEEREHE NGEEEAIES X=2Tirs (REaHEE) VBIRE (ERER) + & (BS)
‘ZMES BN X5 "B 5 "RHE" | RASSHER RS AR HEEE ERGEIETOREMZE, BRSGhR
MRS VBRI (VIBRERIM

TP IES

X& VI

N 2R

POl = SHIES

(TR EE Ra: BHIERHRAE, Tins




IINk&mk

Method

(1) Feature extraction with vision transformer
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(2) Supervised Contrastive (left) & Self-supervised Contrastive (right)
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(3) Semi-supervised K-Means Clustering
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I Methods

(1) Representation learning
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@ Unsupervised contrastive loss
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softmax softmax where Z; = gb(f(x'&)) and ]l[n?érb] 1S an indicator function
Cent'ering evaluating to 1 iff n # 4, and 7 is a temperature value. f
| is the feature backbone, and ¢ i1s a multi-layer perceptron
student ggs S teacher gg; (MLP) DI'O] ection head.
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I Methods

(2) Label assignment with semi-supervised k-means

Instead of performing this parametrically as is common in NCD (and risk overfitting to the labelled data) we
propose to use a non-parametric method.

(3) Semi-supervised K-Means Clustering
A ] A

Label kmean
instances from the same class in DL are always forced to have the same cluster assignment

UnLabel kmean++
each instance in DU can be assigned to any cluster based on the distance to different centroids
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(3) Estimating the class number in unlabelled data
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I Methods
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Table 1. Datasets used in our experiments. We show the number

of classes in the labelled and unlabelled sets (| V|, | Vu

as the number of images (|D.|, |Du|).

), as well

CIFAR10 CIFARI00 ImageNet-100 CUB SCars Herbl9
A 5 80 50 100 98 341
|Vl 10 100 100 200 196 683
De| 125k 20Kk 31.9k 1.5k 20k 89k
Dy|  37.5k 30k 95.3k 45k 6.1k 254k

) G ARE

NANJING UNIVERSITY OF AFHUNALITT S5 AN A



T
Sy, o
N é} W'y b )
) B8 SAPUE AL =
% o5 §
° 'J“A‘P_ NANJING UNIVERSITY OF AFHUNALITE S AN AL THONALITT S

I Experiments

BaselLines

@ RankStats+
RankStats trains two classifiers on top of a shared feature representation: the first head is fed instances from the

labelled set and is trained with the cross-entropy loss, while the second head sees only instances from unlabelled
classes (again, in the NCD setting, the labelled and unlabelled classes are disjoint).

@UNO+
Similarly to RankStats, UNO is trained with classification heads for labelled and unlabelled data. The model is then

trained in a SwAV-like manner.

Evaluation protocol
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I Experiments

Table 2. Results on generic image recognition datasets.

Table 3. Results on SSB [45] and Herbarium19 [42].

CIFARI10 CIFAR100 ImageNet-100 CUB Stanford Cars Herbarium19
Classes All Old New Al Old New Al Old New Classes All Old New Al Old New Al 0ld  New
k-means [30] 836 857 825 520 522 508 727 755 T3 k-means [30] 343 389 321 128 106 138 129 129 128
RankSiats+ 468 192 605 582 776 193 371 616 248 RankStats+ 333 516 242 283 618 121 279 558 128
UNO+ 686 983 538 695 806 472 703 950 579 UNO+ 351 490 281 3535 705 186 283 537 147
Ours 915 979 882 708 Tle 570 741 898 663 Ours 513 56.6 487 300 576 299 354 510 270
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Table 4. Estimation of the number of classes in unlabelled data.

CIFAR10 CIFAR100 ImageNet-100 CUB

SCars Herb19

Ground truth 10 100 100 200
Ours 9 100 109 231
Error 10% 0% 9% 16%

196 683
230 520
15% 28%
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Figure 2. TSNE visualization of instances in CIFAR10 for features generated by a ResNet-50 and ViT model trained with DINO self-
supervision on ImageNet, and a ViT model after fine-tuning with our approach.

Table 5. Ablation study on the different components of our approach.

ViT Backbone  Contrastive Loss  Sup. Contrastive Loss ~ Semi-Sup k-means CIFAR100 e 8

All Old New All Old  New
(1) X X X X 340 348 324 121 125 119
2) v X X X 520 522 508 129 129 128
3) v v X X 546 541 537 143 151 139
4) v X v X 605 722 350 178 227 154
(5) v v v X 711 783 56.6 287 321 269
(6) v v v v 730 762 665 354 510 27.0

Semantic Shift Benchmark (SSB, including CUB and Stanford Cars)
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I Experiments

DINO-VIiT before fine-tuning ViT after fine-tuning w\ ours
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Figure 3. Attention visualizations for the DINO-ViT model before (left) and after (right) fine-tuning with our approach. For Stanford Cars
and CUB, we show an image from the ‘Old’ (first row for each dataset) and ‘New’ classes (second row for each dataset). Our model learns
to specialize attention heads (shown as columns) to different semantically meaningful parts, which can transfer between the labelled and
unlabelled categories. The model’s heads learn “Windshield’, ‘Headlight’ and “Wheelhouse’ for the cars, and ‘Beak’, ‘Head’” and ’Belly’
for the birds. For both models, we select heads with as focused attention as possible. Recommended viewing in color with zoom.



