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Background

This paper addresses the domain-incremental learning (DIL) challenge using a 
pre-trained Vision Transformer (ViT). To combat catastrophic forgetting when 
data distributions shift over time, it introduces the DUCT framework with a 
dual consolidation mechanism. First, historical knowledge is preserved by 
fusing previous model representations into the current embedding space. 
Second, semantic information about each class is leveraged to estimate and 
adjust the weights of the old classifiers so they remain effective in the new 
representation space. As a result, the model can learn from newly arriving 
domain data while retaining its ability to discriminate samples from earlier 
domains.



Introduction



Introduction



Method

two complementary consolidation stages in DUCT
1. Representation Consolidation (to resist feature‐level forgetting);
2. Classifier Consolidation (to resist classifier‐level forgetting).

Figure 1. Illustration of DUCT. Top: Representation consolidation. We utilize the pre-trained model as initialization and optimize it
for each domain, obtaining the task vectors. Afterward, we combine the pre-trained model and all seen task vectors to build the unified
embedding space. Bottom: Classifier consolidation. To align the classifiers with consolidated features, we design the new classifier
retraining and old classifier transport to consolidate classifiers. Class-wise semantic information is utilized in classifier transport.



Method
 1、Consolidation of the Feature Space

In the context of Domain Incremental Learning (DIL), models need to balance knowledge 
learned from multiple domains while avoiding feature overriding and forgetting due to 
constant updates. To address this, a new feature update strategy is proposed to build a 
universal embedding space that can adapt well to data distributions from all domains.
Under ideal conditions, we can train a separate model for each new domain individually, 
resulting in a set of domain experts:

These models are optimized for domain-specific discrimination using a shared prediction 
model structure.
If the domain of each input sample is known, we can directly invoke the corresponding 
expert for inference. However, in DIL tasks, domain labels are often unavailable, making 
direct application of domain experts impractical.
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Inspired by model fusion techniques, this paper proposes a method that constructs a 
theoretical model for multiple domains using task vectors. This allows the learning of a 
powerful, general-purpose feature representation model capable of handling 
classification across multiple domains.
Let the weighted feature space for domain � be denoted as � ��, where the embedding 
function � is adjusted by a linear combination of task specific deltas:

Thus, the generalized feature space is defined as:

While this approach is intuitive and simple, it does not consider task relationships. For 
example, when dealing with similar tasks, stronger fusion weights should emphasize 
overlapping domain knowledge.



Method
To address this, a task similarity variable Sim 0,�

  is introduced.
One way to measure task similarity is to compute the similarity between task direction 
vectors. However, due to the high-dimensional nature of the weight space, direct similarity 
computations may lose meaning.
To avoid this, the paper measures similarity via task-specific feature distances using class 
centers:

We then construct class centers for both embedding spaces:
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Pairwise similarities between these centers are averaged to get task similarity:

Finally, using cosine similarity to compute distances, the new generalizable 
embedding function becomes:
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2、Consolidation of the Classification Space

Due to the changes in embedding space from fusion, the classifier may no longer 
align with the updated features. Thus, the classifier must also be adapted 
accordingly.Let �0 be the old classifier and �� the new classifier to be retrained. 
The paper proposes a two-step process for aligning classifiers.

Retraining of the New Classification Head

To adapt to the new embedding space, we retrain the new classifier �� while freezing 
the embedding network � ��:



Method
Migration of the Old Classification Head

Even after retraining the new classifier, the old 
classifier might still misalign with the new 
embedding space, leading to performance 
degradation on old tasks, i.e., catastrophic 
forgetting.
To solve this under the exemplar-free setting, 
the paper proposes an Optimal Transport (OT) 
based solution to adjust the old classifier to the 
new feature space.

Let:
�1: class distribution of the new classifier,
�2: class distribution of the old classifier,
T: transport matrix (matching distribution),
Q: cost matrix for transferring from class j 
to class i.

The OT objective is:
The cost matrix ��,�is defined by Euclidean distances between class centers in the embedding space:

This allows the old classifier to be adjusted to match the new embedding space and retain performance 
on previous tasks.
The final expression for the calibrated and fused classifier heads is given as follows:"
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Figure 3. Further analysis on multiple task orders, forgetting measure, and 
parameter robustness. (a): Incremental performance of different
methods on CORe50 with five task orders. The shadow indicates standard 
deviation. (b): Forgetting measure (lower is better) of different
methods on CDDB dataset among five task orders. DUCT shows the least 
forgetting among all methods.

Key Conclusions:
1. DUCT outperforms all baselines in 

final accuracy and forgetting 
resistance, showing strong stability.

2. It generalizes better than other 
prompt-based and replay-based 
methods across diverse DIL tasks.

3. Robust across different pretrained 
backbones (IN1K & IN21K), 
demonstrating good compatibility.
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Use circles to represent samples from the first domain, and triangles 
for samples from the second domain. In the figure below, the left 
subfigure shows the class-wise distribution of samples before feature 
fusion, while the right subfigure illustrates the distribution after fusion.
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The experiment selects from {0.1, 0.25, 0.5, 0.75, 
1.0}, forming a total of 25 parameter combinations. 
The average performance of these parameter 
combinations is calculated on the Office-Home 
dataset. As can be seen from the figure, DUCT 
generally has strong robustness to parameter changes. 

More detailed ablation experiments 
were conducted on the CDDB dataset 
to explore the importance of each 
module of DUCT. As shown in the 
following table, the performances of 
various method variants were 
compared: 
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