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Background

This paper addresses the domain-incremental learning (DIL) challenge using a
pre-trained Vision Transformer (ViT). To combat catastrophic forgetting when
data distributions shift over time, it introduces the DUCT framework with a
dual consolidation mechanism. First, historical knowledge 1s preserved by
fusing previous model representations into the current embedding space.
Second, semantic information about each class is leveraged to estimate and
adjust the weights of the old classifiers so they remain effective in the new
representation space. As a result, the model can learn from newly arriving
domain data while retaining its ability to discriminate samples from earlier

domains.
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Introduction

In this paper, the task data inputs of the model are denoted as {D*, D?, - - -, 'DB}, where a single task is
composed of Db = {Xp, o}, and V) = {yi}?ﬁl satisfies y; € Y. Here, Y remains unchanged throughout

the learning process of the model, while the data distribution varies with tasks, that is, p(X}) # p(Xy) for

b+b.

In addition, this paper is based on the exemplar - free setting, that is, when learning new tasks, data samples or

features of historical tasks are not saved. Thus, the goal of domain incremental learning in this paper can be

summarized as the following formula (where H is the hypothesis space and Z is the indicator function):

f* = a,r;glginE(X?y}mD}U...LprI(y 7£ f(x))
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Introduction

Considering the pre - trained model ViT selected in this paper, its structure can be decomposed into two parts:

the embedding function ¢(+) : RY = R? and the linear classification head W € R¥*Y The output of the

model can be expressed as: f(x) = W1 ¢(x).

This paper adopts the Cosine® classification head, and the classifier does not contain a bias term,

W = |wi, Wy, -, W|Y|], When learning each new task, following previous work, this paper still expands a

new classification head for the new task, and splices it with the old classification heads for prediction in the

testing phase. The result of (argmax; w! ¢(x)) mod [Y| is taken as the output of the model.
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two complementary consolidation stages in DUCT
1. Representation Consolidation (to resist feature-level forgetting);

2. Classifier Consolidation (to resist classifier-level forgetting).
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Figure 1. llustration of DUCT. Top: Representation consolidation. We utilize the pre-trained model as initialization and optimize it

for each domain, obtaining the task vectors. Afterward, we combine the pre-trained model and all seen task vectors to build the unified

embedding space. Bottom: Classifier consolidation. To align the classifiers with consolidated features, we design the new classifier
retraining and old classifier transport to consolidate classifiers. Class-wise semantic information is utilized in classifier transport.
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Method

1. Consolidation of the Feature Space

In the context of Domain Incremental Learning (DIL), models need to balance knowledge
learned from multiple domains while avoiding feature overriding and forgetting due to
constant updates. To address this, a new feature update strategy is proposed to build a
universal embedding space that can adapt well to data distributions from all domains.
Under 1deal conditions, we can train a separate model for each new domain individually,
resulting in a set of domain experts:

{91(:), W1},...,{¢5("), W5}

These models are optimized for domain-specific discrimination using a shared prediction
model structure.

If the domain of each input sample 1s known, we can directly invoke the corresponding
expert for inference. However, in DIL tasks, domain labels are often unavailable, making
direct application of domain experts impractical.
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Inspired by model fusion techniques, this paper proposes a method that constructs a
theoretical model for multiple domains using task vectors. This allows the learning of a
powerful, general-purpose feature representation model capable of handling
classification across multiple domains.

Let the weighted feature space for domain be denoted as , where the embedding
function 1s adjusted by a linear combination of task specific deltas:

0, = i — o

Thus, the generalized feature space is defined as:

;

LTTL [

O, = Qp + Oy E 0,
k=1

While this approach is intuitive and simple, it does not consider task relationships. For
example, when dealing with similar tasks, stronger fusion weights should emphasize
overlapping domain knowledge.



Method

To address this, a task similarity variable Sim  1s introduced.

One way to measure task similarity 1s to compute the similarity between task direction
vectors. However, due to the high-dimensional nature of the weight space, direct similarity
computations may lose meaning.

To avoid this, the paper measures similarity via task-specific feature distances using class

centers: a
D' D’|

¢, =Y Iy; = p)¢i(e;)/ > Ly; =p)
j=1 j=1
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Method

1 .
Sim,; = Wl Z sim(c?, c’)

Finally, using cosine similarity to compute distances, the new generalizable
embedding function becomes:

¢ = o+ ay »  Simg iy
k=1
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Method

2. Consolidation of the Classification Space

Due to the changes in embedding space from fusion, the classifier may no longer
align with the updated features. Thus, the classifier must also be adapted

accordingly.Let o be the old classifier and the new classifier to be retrained.
The paper proposes a two-step process for aligning classifiers.

Retraining of the New Classification Head

To adapt to the new embedding space, we retrain the new classifier while freezing
the embedding network

111111 Z (WM (z),y)
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Migration of the Old Classification Head

Even after retraining the new classifier, the old
classifier might still misalign with the new
embedding space, leading to performance
degradation on old tasks, i.e., catastrophic
forgetting.

To solve this under the exemplar-free setting,
the paper proposes an Optimal Transport (OT)
based solution to adjust the old classifier to the
new feature space.
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Let:

1: class distribution of the new classifier,
»: class distribution of the old classifier,
T: transport matrix (matching distribution),
Q: cost matrix for transferring from class j

to class 1.

The OT objective is: I%i.n{i Q) st Tl=g T™l=pT >0
The cost matrix  1s defined by Euclidean distances between class centers in the embedding space:
Qij = ||C£'.J - Cj“%

This allows the old classifier to be adjusted to match the new embedding space and retain performance

on previous tasks.

The final expression for the calibrated and fused classifier heads is given as follows:"

Wh = (1 — aw)Wo s ()ino = (1 - a’w)Wo + awW,T

o
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Table 1. Average and last performance of different methods among five task orders. The best performance is shown in bold. All methods
are implemented with ViT-B/16 IN1K. Methods with 1 indicate implemented with exemplars (10 per class).

Method Office-Home DomainNet _ CORe50 _ CDDB
A Agp A Ap A Agp A Agp
Finetune 78.3243x 76.16+13 28.172em 38.821765 1544 5168 76.1942% 52.08+135 N1lsie
Rf,‘p]ii}"T ['; E] 84.23124 83.7 5208 64. T8 12 61.16+119 85.56+03s 02.21 10, 66911150 63.211us
iCaRL" [52] 81.66+25 8l.1lsuizs 59.89:28 5746125 7443150 79.86120 6843110 705041
MEMOT [85] 71184256 63092150 61.92145%  58.411320 64801306 68.24+2a  00.87+13s  58.091uz
SimpleCIL [88] 75,6925 75721000 42951248 44081000 70921078 748010  00.801s00 63.4010m
L2P [70] 79.72+40  80.03+12¢  50.45+40 48.72+25s  83.57+03s  87.87+us 073345 644545
Dua]Prﬂmpt {f‘.l-g] 80.20+£34 3{)851ﬂ|4 52 28433 50.46+317 84.53 00 87.27 11 68.331752 T1.41+1m
CDD:‘\-PN}[HP[ [58] 84. 70120 85.07 203 59,8514 59.99 1038 87.92100 91.57 tem 69,1961 T4. 1841
EASE [536] 81.16+32 76331216 50.501:2  43.721170  86.30+00s  87.02+12  67.78+24¢  64.90+83%
RanPAC [4(] 8230143 82281000 55.2013:  54.801036  79.1610ss  81.38101z  T892+4ss  80.4810s
S-‘lpl'{_)['l'lp[ I(”}H] 81.50+s1 80.51 202 61.1614s 60.461000 81.95205 83.38z0m 0685120 T72.7610s
DucTt 86.27:26 86911006 67.162355 67.01:s 91952005 94.47:0n 841414 85.10:0=
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Experiment
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Figure 8. Incremental performance of different methods with ViT-B/16 IN21K. We report the performance gap after the last incremental
stage between DUCT and the munner-up method at the end of the line.
Figure 7. Incremental performance of different methods with ViT-B/16 IN1K. We report the performance gap after the last incremental
stage between DUCT and the runner-up method at the end of the line.
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Figure 3. Further analysis on multiple task orders, forgetting measure, and
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(b) Forgetting measure

parameter robustness. (a): Incremental performance of different

methods on CORe50 with five task orders. The shadow indicates standard

deviation. (b): Forgetting measure (lower is better) of different

methods on CDDB dataset among five task orders. DUCT shows the least

forgetting among all methods.
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Key Conclusions:
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1. DUCT outperforms all baselines in
final accuracy and forgetting
resistance, showing strong stability.

2. It generalizes better than other
prompt-based and replay-based
methods across diverse DIL tasks.

3. Robust across different pretrained
backbones (IN1K & IN21K),
demonstrating good compatibility.
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Experiment

Figure 4. Before DUCT. Figure 5. After DUCT.

Use circles to represent samples from the first domain, and triangles
for samples from the second domain. In the figure below, the left
subfigure shows the class-wise distribution of samples before feature
fusion, while the right subfigure illustrates the distribution after fusion.
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More detailed ablation experiments = i 80.70 jelth
were conducted on the CDDB dataset o )
. > M -79.56 el 50.71 RORE
to explore the importance of each e -
module of DUCT. As shown in the Eg 79.54 Rel 50,74 m -78
following table, the performances of E
various method variants were 5o ol 7143
compared: = 75,80 EIN 80.48 I.,,2
Variations "i A B ; IBacifrim-n?frge F&Eii ﬂ¢,l ¢
Baseline | 66.56 63.40 The experiment selects from {0.1, 0.25, 0.5, 0.75,

Variation 1|80.36 74.17 1.0}, forming a total of 25 parameter combinations.

Vﬂﬁ“‘?”“ 2181.4176.82 The average performance of these parameter
Vanation 3 | 85.42 80.31 combinations is calculated on the Office-Home
DucT 87.74 82.35 dataset. As can be seen from the figure, DUCT
generally has strong robustness to parameter changes.

Table 2. Ablation study on differnt
modules in DUCT.
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