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* The ever-growing size of pre-trained language models (PLMs) has presented
significant challenges in adapting these models to desired tasks. In response to this
practical limitation, parameter-efficient fine-tuning (PEFT) has emerged as a
promising strategy for real-world environments. Instead of fine-tuning all weights,
PEFT optimizes only a minimal set of parameters, thereby drastically cutting down the
computation and storage costs. Such efficiency has led PEFT methods to become the
preferred standard approaches for applying PLMs 1n real-world contexts, such as
federated learning and continual learning.

* While PEFT enables the efficient optimization of PLMs 1n real-world settings, datasets
in such environments often contain noisy labels, which adversely affects the
generalization capabilities of PLMs. Given such distinct characteristics of the practical
environments, PEFT methods are inevitably exposed to noisy labels during the
optimization phase. Despite this significant challenge, there 1s a lack of prior research
on the general adaptability of PEFT methods to noisy label learning (NLL) scenarios.
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I Motivation

* Our results reveal that PEFT struggles in memorizing noisy labels due to its inherently limited
capacity, which interestingly provides robustness to noisy labels. However, we also find that
such limited capacity simultaneously makes PEFT more susceptible to interference of noisy
labels, which impedes learning ability for clean samples, potentially leading to sub-optimal
performance. This characteristic markedly contrasts with the behaviors in full fine-tuning,
presenting the necessity of PEFT that steers its limited learning capacity towards clean samples.
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Figure 1: Comparison between PEFT methods and full fine-tuning on SST-5 with symmetric noise (60%). Dashed
lines represent the training accuracy and loss of clean samples on uncorrupted datasets (i.e. only clean samples).
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I Methods

* Estimating clean probability for routing. p(glf)

Deep networks prefer to learn clean samples first before fitting noisy ones.
Noisy samples tend to have a higher loss than clean samples in the early training stage.

This enables to distinguish potentially clean samples )
from the datasets based on loss deviation. Taking Loss Modelmg
advantage of such phenomena, we adopt the widely-
used Gaussian Mixture Model (GMM) in noise label
learning, in which the probability of samples being
clean is estimated by the per-sample loss.

Train model for the k epochs warm-up to measure the
loss of samples, and then estimate the clean
probability for each training sample on every
subsequent epoch.

Training Loss
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e Sampling routing decision
r ~ BERNOULLI(7D)

r 1s an independent Bernoulli random variable;
the coefficient y€ [0, 1] limits the range of clean probability, setting its upper bound at y.

* Activating PEFT based on the decision

Trans() (R, 6O + 90 if r) =1

h(H—l] _—
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Figure 2: Overview of the Clean Routing. CleaR first estimate the probability of each sample being clean based on
the training losses. Based on the estimated probability, CleaR adaptively activates PEFT modules by favoring the

potentially clean samples.

* Estimating clean probability for routing.

e Sampling routing decision

« Activating PEFT based on the decision



i
R, % 7
S Y-y JPUE AL g
e O %/ §
,-f," 'm“%- NANJING UNIVERSITY OF AFHUNALITE S AN AL THONALITT S
U A

* Consistency Regularization for CleaR
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Figure 6: Detailed illustration of the CleaR adaptation to PEFT methods (e.g., Adapter, Prompt Tuning, BitFit,
LoRA). Dashed lines indicate the unused modules, except for the CleaRg;r; that uses fixed pre-trained biases.
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Table 1: Evaluation results of Peak accuracy and Average accuracy on SST-5 test set under different levels of label
noise. The best and second best results are highlighted in boldface and underlined, respectively.

Symmetric Asymmetric
Mcthods Clean " a0, 40% 60% 10% 20% 40%
Peak. Avg. Peak. Avg. Peak. Avg. Peak. Avg. Peak. Avg. Peak. Avg.
Full Fine-tuning 534 513 470 506 429 479 355 525 491 508 465 46.1 374
PEFT methods
Adapter (2019) 533 519 48.1 505 458 472 381 522 510 509 470 48.1 380
BitFit (2022) 530 517 510 508 48.1 48.1 435 521 505 52.1 492 489 421
Prompt (2022b) 52.7 51.1 48.6 50.7 49.1 477 457 517 508 494 48.2 46.1 417
LoRA (2022) 536 520 495 502 475 482 461 519 511 505 474 472 418
PEFT methods with CleaR (ours)
CleaRadapter 534 524 518 515 504 504 497 525 508 514 474 48,1 446
CleaRg;j 53.1 519 51.1 516 51.2 514 511 520 514 523 504 49.2 483
CleaRprompt 526 510 505 514 495 494 472 521 512 520 514 478 46.5
CleaRy ora 533 514 50.1 512 490 500 489 520 511 510 504 476 432
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I Experiments

Table 2: Evaluation results of Peak accuracy and Average accuracy on BANKING77 test set under different levels
of label noise. The best and second best results are highlighted in boldface and underlined, respectively.

Symmetric Asymmetric

20% 40% 60% 10% 20% 40%
Peak. Avg. Peak. Avg. Peak. Avg. Peak. Avg. Peak. Avg. Peak. Avg.

Full Fine-tuning 929 888 834 843 726 782 585 908 876 873 794 669 546

PEFT methods
Adapter (2019) 9277 885 854 866 784 809 671 903 836 86.7 785 653 56.2
BitFit (2022) 925 889 887 86.7 859 801 765 902 898 8.3 831 66.7 624
Prompt (2022b) 919 878 874 856 845 832 772 897 884 854 849 616 589
LoRA (2022) 930 892 883 868 858 819 775 90.1 886 869 831 o645 618

PEFT methods with CleaR (ours)

Methods Clean

CleaRa dapter 93.1 90.1 89.7 882 873 823 802 914 903 87.6 861 673 66.1
CleaRgiit 924 898 89.2 873 869 829 822 907 904 875 86.1 67.1 634
CleaRprompt 92.1 881 87.6 858 849 837 810 899 892 857 848 645 623

CleaRyorA 928 900 898 874 869 842 835 913 903 872 859 689 68.1
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Table 3: Ablation study of CleaR on SST-5 (60% of
symmetric noise). For the ablation of routing strategies,
we remove the consistency regularization to solely eval-

uate each routing strategy.

Methods Peak. Avg.
CleaR pggprer(OUurs) 504 49.7
Components in CleaR
CleaR w/o Clean Routing 48.4 41.1
CleaR w/o Regularization 499 48.6
CleaR w/o Clean Routing & Regularization 47.2  40.0
Routing Strategy in CleaR
CleaR w/ Clean Routing 499 48.6
CleaR w/ Deterministic Routing 48.1 4.2
CleaR w/ Random Routing 47.5 405
CleaR w/ Noisy Routing 46.9 343
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I Experiments
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Figure 4: Impact on two memorizations when applying
CleaR to PEFT methods. Best viewed in color..



I Experiments

Table 5: Peak and Average accuracy (%) on SST-5 under

different levels of instance-dependent noise.

Method Clean b %
Peak. Avg. Peak. Avg.
Full Fine-tuning 534 49.0 439 448 38.9
PEFT methods
Adapter 533 488 44.1 442 39.7
BitFit 53.0 500 454 448 41.6
Prompt 5277 495 462 428 388
LoRA 53.6 49.1 469 442 398
PEFT methods with CleaR (ours)
CleaR Agapter 534 50.5 464 45.7 434
CleaR it 53.1 510 46.5 452 426
CleaRpyompt 526 502 44.1 448 432
CleaRy oraA 533 4977 47.1 46.5 448
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