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e Conventional FL is often studied in a setup with a fixed number of clients.
— New clients should be allowed to join the learning process
e How to deal with heterogeneous or evolving client data distributions ?
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key challenges:

1) Not applicable to both of the
class-incremental scenarios and
domain-incremental scenarios.
2) Performance degradation
on the source domain.
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» FedHEAL(CVPR 2024)
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Experiments BT RAAT
Methods |-~ Digits | ~ OfficeCaltech

> | MNIST USPS SVHN SYN | AVGT STDJ | Amazon DSLR Caliecch Webcam | AVGT STDJ
FedAvg |36] 80.84 93.25 7954 4135 | 7600 23.82 72.63 36.67 58.57 45.52 58.35 11.13

+AFL [38] 90,55 9583 7513 4442 | 7649 23.12 64.21 65.37 57.50 48.28 58.83 784
+q-FFL [27 9144 9410 7633 4448 | 7659 22.79 60.00 64.01 53.39 o A £ 57.28 5793
+FedHEAL 90.27 9569 7994 4645 | 7809 2208 67.90 66.00 5928 66.21 64.85 380
FedProx [29] 90.27 9393 BO.O4 4282 | 7676 23.38 69.90 5800 6027 45.52 58.42 10.03

+AFL [38] 9286  96.17 7447 4222 | 7643 24.72 68.10 62.67 59.29 5241 60.62 637
+g-FFL [27] 88.58 9349 7558 4423 | 7547 22.15 61.37 72.66 54.91 55.52 61.11 823
+FedHEAL 89.06 9552 7944 4667 | 7767 21.70 66.11 72.67 57.50 67.59 65.97 6.30
Scaffold [22 94.15 9444 7687 4422 | 7742 23.61 69.37 59.33 59.55 46.21 58.62 9.50

+AFL [3¥] 91.77 96.05 7860 4639 | 7820 2247 66.42 63.33 59.11 49.31 59.54 745
+q-FFL [27 8773 9459 7400 4376 | 75.02 22.53 61.79 73.33 55.18 55.86 61.54 840
+FedHEAL 9268 9625 7854 4772 | 7880  22.08 64.11 67.99 55.18 62.41 62.42 537
MOON [26] 9046 9265 BO4E 4058 | 7604 24.23 74.00 59.33 60.63 46.90 60.21 11.08

+AFL [38] 91.25 96.03 7531 4434 | 7673 23.34 66.74 67.33 60.80 55.17 62.51 571
+g-FFL [27] 9043 9484 7648 4395 | 7642 23.02 64.32 65.33 54.28 61.03 61.24 499
+FedHEAL 9134 9494 B132 4496 | 7814 2286 67.68 65.33 59.11 64.14 64.07 362

FedDyn [1] 91.23 9236 BO.15 4155 | 7632 23.83 71.16 62.00 5920 48.62 60.24 928

+AFL [38] 92.11 96.10 7146 41.52 | 7530 2497 70.10 58.67 59.82 51.03 59.91 7.84
+g-FFL [27 9253 9517 7637 4475 | 7720 2318 62.10 67.33 54.82 56.21 60.12 5.76
+FedHEAL 80.87 9500 B0.18 4423 | 7732 2290 67.47 60.66 59.02 54.83 60.50 526
FedProc [39] 91.86 9116 7854 3987 | 7536 24.44 60.21 46.00 5598 46.90 52.27 6.95

+AFL [38] 87.85 9428 7852 4154 | 7555 23.58 52.63 52.67 55.09 43.45 50.96 514
+q-FFL [27] 9209 9209 7497 4521 | 7615 22.17 65.79 42.01 55.80 50.69 53.57 994
+FedHEAL 9423 9293 R143 4867 | 7931  21.22 67.58 66.00 5679 61.38 62.94 487

FedProto [48] 8099 9290 BLO9 4093 | 7623 24.06 71.48 42.67 62.23 60.34 56.18 12.04

+AFL [38] 8527 9290 6716 4236 | 7192 22.47 70.74 56.67 177 79.65 66.21 11.01
+q-FFL [27 9335 9492 7708 4631 | 7791 22.56 72.74 54.67 64.20 82.76 68.59 11.99
+FedHEAL 8849 9462 B139 4846 | 7824  20.58 75.68 76.00  65.18 80.34 74.30 644
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I Experiments

CLASSIFICATION ACCURACY (%) OF OSDA TASKS ON DIGITS

Compared &= M U—= M M—=U AVG
Methods 0S 0S8* 0S8 0S* 0S 0S8* 08 0Ss*
1D
FedAvg [23] 565 675 760 847 365 433 563 65.2
CMFL [24] 478 557 783 819 491 356.5 584 647
MOON [33] 497 589 408 500 439 509 448 542
FedEuc [31] 512 606 650 628 560 644 574 626
FedCos 51.2 608 674 727 524 615 570 650
~SHOT [21] 68.5 804 702 795 742 850 634 723
IVC [22] 532 626 784 910 769 903 695 813
FOSDA 651 77.0 814 931 830 924 765 875
Non-11D
FedAvg [23] 529 614 644 708 644 708 606 67.7
CMFL [24] 508 599 645 622 361 384 505 535
MOON [33] 349 46.0 62.2  71.0 489 56.1 487 57.7
“FedEuc [31] 393 450 75.5 825 327 371 492 549
FedCos 481 572 63.7 720 606 716 575 669
SHOT [21] 633 73.0 689 787 77.6 89.6 699 B804
IVC [22] 355 38.0 41.1 498 490 538 419 472
FOSDA 652 75.1 80.1 926 75.0 832 734 836
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I Motivation
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Observation:
1) The variation of the encoder does not show a clear fluctuation trend no matter in class or domain incremental
scenarios.

2) The changes in the classifier parameters are more pronounced in the class-incremental scenario.
3) While both new classes and domain will bring obvious changes to the feature values, it 1s more significant in
the domain-incremental scenario.
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I Method

Domain-incremental contribution-driven aggregation
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Class-incremental contribution-driven aggregation

encoder aggregation
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Algorithm 1: Gains

Input: Number of source clients NV, ori qgmal source global model W¥ and client model

{W{(0,0), WF(0,0),--- , W5(0,0)}; number of iteration I; number of local training R; public

data D” = {(a",y")}
Output: Global model W
Distribute original source model W o target client

W Target client performs local updating based on w?

Target client Uploads W7 to the server
WK nowledge Discovery

Split the W¥ into encoder E and classifier €%, split the W7 into ET and C7
FE o E3a"), FT « ET(2™)
Calculating Diff and Dif f¥
if Dif f¥>Tr then
Target client brings new knowledge
if DiffS>Ty then
|_ C'lass Inerement=Te

else
|_ Dramnevin Inerement=True

WEnowledge Adapration

for iteration i =0, --- I do

if Domain Increrment="True then
Calculating encoder contributions {CDYy ,CD5 | -- } based on Eq. {2
Calculating classifier contributions {C“DP CTJC S } based on Eq. ]
Aggregating all clients’ parameters using Eq. [ﬂ and Eq ﬁ]

if Class Imererment =True then

Calculating encoder contributions {CCI 5 g 34" CCE based on Eq. @
| Aggregating all clients” parameters using Eq and Eq.

Server distributes the aggregated model to all clients
for clientn=1,--- , N do
Locally update model 1 rounds using Eq@
Upload W (i, R) to the server

| Target client locally update model /? rounds and upload to the server

else
|_ Apply the orginal model to newly joined clients for inference tasks without training
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I Experiments

Table 1: Main results. The bold font represents the optimal result.
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Federated Domain Adaptation Heter-FL
Scenario  Metric Ot FOSDA SemiFDA  AutoFedGP FedHEAL Fed AVG FedProx FedProto
[TNNLS 24 [ICDM™ 24 [ICLR 4] [CVPR™24 |AISTATS 17 [ML5ys 20 [AAAL 2]
DigitFive
TAcc 99,34 0.00 (.00 6i.11 22.60 55.73 712.35 717.61
Mild S-Ace 93.21 12.72 13.53 0.00 99,29 (.36 9953 0.16
) (-Acc 94.44 10.18 10.83 13.62 83.95 11.44 94.00 62.12
T Acc 97.01 I1.29 7.01 078 03.68 on.79 04 8% 45.66
Medium S-Ace 90.09 19.46 19.44 6.22 BE.71 76.20 ®6.50 33.56
: (-Acc 91.65 17.82 17.14 6.93 ®0.70 79.12 RE.18 43.23
T-Acc U898 11.29 31.14 10.37 0608 85.%0 85,29 31.28
Strong S-Ace 93.18 13.60 14.21 11.60 83.32 43.90 43.32 62.23
G-Acc 94.34 13.13 17.60 11.35 86.05 52.28 51.72 37.47
Amazon Review
T-Acc 84.60 4955 50.45 50.50 50.56 66.74 74.55 50.11
Midiii S-Ace 5281 49.55 49.33 50.50 50.56 67.19 74.44 50.11
G-Acc 83.09 49.82 49.82 50.58 50.48 67.38 74.12 50.01
T-Acc 80.54 50.4% 55.41 50.03 ®3.34 51.20 53.73 50.10
Strong S-Acc 84.95 50.27 59.25 50.02 86.54 51.36 53.95 50.11
z (-Acc 83185 50.33 58.29 50.02 85.74 51.32 53.89 50.10

Mild: MNIST targat domain: {1, 5} source domain: {0, 2,3,4,6,7,8, 9}
Medium: target domain: {SVHN} source domain: {MNIST}
Strong: target domain: {MNIST} source domain: {MNIST-M, SVHN, USPS, SynthDigits}
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Table 2: Generalization verification.
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[1.5] [6.9] 10.1.5)

NA | 99.34 04.42 99,50

Mi-DE | OA | 93.21 96.03 87.16
GA | 94.44 95.71 89.64
SV-MT MT-MTM  SYN-MTM

NA | 97.01 04.46 8848
Me.DE | OA | 90.09 99.56 97.76
GA | 9165 98.54 95.90

MT SV MTM

NA | 08.08 91.67 93.04

SLDE | OA | 93.18 97.58 96.20
GA | 94.34 96.40 95.75
DD-BK  BK-DD ET-KC

NA | 846 82.01 86.59
Me.AR | OA | 82.81 86.85 89.93
GA | 83.00 85.88 89.26

BK DD KC

NA | 8054 78.22 85.38

SLAR | OA | 84.95 88.90 87.73
GA | 8385 86.23 87.14

Table 3: The performance of sequential FDA.

{4,5} {6,7} {8,9}

NA | 99.88 91.35 96.89

Mi | OA | 93.53 99.43 99.35

GA | 96.82 98.08 99.00

"MNIST MNISTM SYN

NA | 95.27 83.53 93.53

Me | OA | 8791 90.05 89.66

GA | 89.38 88.96 90.21

Table 5: Convergence Comparison of
Different Methods.
Method | Converge Round  Time

Gains 5 807.45
FedHEAL 40 1368.4
FedAVG 20 1977.20
FedProx 40 6880.80
FedProto 32 9519.68
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