2024年春季学期
7.19
- 郑腾鑫陵:Unsupervised Domain Adaptation by Back Propagation & A Comprehensive Survey on Test-Time Adaptation under Distribution Shifts[slide][paper1][paper2]
7.4
- 万文海:Data Augmentation-Based Long-tailed Learning[slide][paper1][paper2]
介绍了long-tailed learning中关于数据增强的两个工作。第一篇发现class-wise augmentation 可以提高 non-augmented classes 的性能,而 augmented classes 的性能可能不会显著提高,基于这一点,分别计算每个类别的 level-of-learning score,并利用该得分来确定增强强度,第二篇提出一种自适应的动态可选数据增强,以解决固有的数据层面的不平衡和外在的增强层面的不平衡,使每个类别在训练期间可以选择适当的增强方法。
6.20
- 郑金鹏:Out-of-Distribution Detection in Long-Tailed Recognition with Calibrated Outlier Class Learning[slide][paper]
6.13
- 万文海:Online Knowledge Distillation[slide][paper1][paper2]
介绍了 Online Knowledge Distillation 的两个工作,一篇使用self-attention机制生成target引导学生网络的输出,另一篇提出了四种基于协作学习的target生成方案。此外,讨论了:1)不平衡场景下训练的模型应用于TTA的合理性、可行性;2)将OOD检测应用于长尾多专家的方案尝试
6.6
- 郑宇翔:Loss Decoupling for Task-Agnostic Continual Learning[slide][paper]
- 郑金鹏:Open-Sampling: Exploring Out-of-Distribution Data for Re-balancing Long-tailed Datasets[slide][paper]
相似论文:采样高斯噪声处理长尾;采样OOD处理噪声,也许可以把OOD样本引入到长尾噪声数据集。
5.30
5.16
- 万文海:Exploring and Utilizing Pattern Imbalance[slide][paper]
相似论文:Subclass-balancing Contrastive Learning for Long-tailed Recognition
共性:从子类角度出发
简介:介绍了用于长尾识别的子类平衡对比学习(SBCL)。它通过子类平衡自适应聚类将头部类分解为多个语义一致的子类,并结合了一种双粒度对比损失,以促进子类和实例的平衡。在多个数据集上的大量实验表明,SBCL在长尾识别的基准数据集上实现了最先进的单模型性能。
5.11
- 赵世佶:Towards Real-World Test-Time Adaptation: Tri-Net Self-Training with Balanced Normalization[slide][paper]
4.25
- 陶子健:No Fear of Classifier Biases: Neural Collapse Inspired Federated Learning with Synthetic and Fixed Classifier[slide][paper]
- 郑金鹏:ProMix: Combating Label Noise via Maximizing Clean Sample Utility[slide][paper]
4.21
- 郑宇祥:Understanding and Mitigating the Label Noise in Pre-training on Downstream Tasks[slide][paper]
- 赵世佶:PromptStyler: Prompt-driven Style Generation for Source-free Domain Generalization[slide][paper]
3.22
- 万文海:Long-Tailed Recognition via Weight Balancing[slide][paper]
3.14
- 陶子健:Model-Contrastive Federated Learning [slide][paper]
- 郑金鹏:When Noisy Labels Meet Long Tail Dilemmas: A Representation Calibration Method [slide][paper]